|Table of Contents|

[1] JIANG Rui, XU Tengyu,. Quantum-resistant dynamic authenticated group key agreement scheme for the Internet of Things [J]. Journal of Southeast University (English Edition), 2025, 41 (3): 392-400. [doi:10.3969/j.issn.1003-7985.2025.03.015]
Copy

Quantum-resistant dynamic authenticated group key agreement scheme for the Internet of Things()
抗量子计算攻击的物联网动态群组认证密钥协商方案
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
41
Issue:
2025 3
Page:
392-400
Research Field:
Information and Communication Engineering
Publishing date:
2025-09-11

Info

Title:
Quantum-resistant dynamic authenticated group key agreement scheme for the Internet of Things
抗量子计算攻击的物联网动态群组认证密钥协商方案
Author(s):
JIANG Rui, XU Tengyu
School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China
蒋睿, 徐腾昱
东南大学网络空间安全学院,南京211189
Keywords:
group key agreement lattice-based cryptography dynamic authentication collusion attack resistance Internet of Things
群组密钥协商格密码学动态身份认证抵抗共谋攻击物联网
PACS:
TN918.4
DOI:
10.3969/j.issn.1003-7985.2025.03.015
Abstract:
With the recent advances in quantum computing, the key agreement algorithm based on traditional cryptography theory, which is applied to the Internet of Things (IoT) scenario, will no longer be secure due to the possibility of information leakage. In this paper, we propose a anti-quantum dynamic authenticated group key agreement scheme (AQDA-GKA) according to the ring-learning with errors (RLWE) problem, which is suitable for IoT environments. First, the proposed AQDA-GKA scheme can implement a group key agreement against quantum computing attacks by leveraging an RLWE-based key agreement mechanism. Second, this scheme can achieve dynamic node management, ensuring that any node can freely join or exit the current group. Third, we formally prove that the proposed scheme can resist quantum computing attacks as well as collusion attacks. Finally, the performance and security analysis reveals that the proposed AQDA-GKA scheme is secure and effective.
随着量子计算技术的快速发展,基于传统密码学理论在物联网场景中的密钥协商算法将面临安全性威胁,存在信息泄露的风险。本文提出了一种适用于物联网环境可抵抗量子计算攻击的动态认证群组密钥协商方案(AQDA‑GKA)。该方案基于环上误差学习难题构建密钥协商机制,以抵抗量子计算攻击。该方案支持节点动态管理,使得任意节点能够自由加入或退出现有群组。此外,形式化证明了所提出的方案能够抵抗量子计算攻击,并且能够有效防御共谋攻击。最后,通过对方案性能与安全性进行分析,证明该方案在确保安全性的同时具备较高的计算效率。

References:

[1]ZHANG H, CHEN L Q, YANG B, et al. Secure lightweight data using scheme in 5G industrial Internet systems[J]. Journal of Southeast University (Natural Science Edition), 2024, 54(3): 772-780. (in Chinese)
[2]ALWEN J, MULARCZYK M, TSELEKOUNIS Y. Fork-resilient continuous group key agreement[M]//Advances in Cryptology—CRYPTO 2023. Cham: Springer Nature Switzerland, 2023: 396-429.
[3]DIFFIE W, HELLMAN M. New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6): 644-654.
[4]BURMESTER M, DESMEDT Y. A secure and efficient conference key distribution system: Extended abstract[M]//Advances in Cryptology—EUROCRYPT’94. Berlin, Germany: Springer Berlin Heidelberg, 1995: 275-286.
[5]YANG Z Y, WANG Z Q, QIU F, et al. A group key agreement protocol based on ECDH and short signature[J]. Journal of Information Security and Applications, 2023, 72: 103388.
[6]ABDUSSAMI M, AMIN R, VOLLALA S. Provably secured lightweight authenticated key agreement protocol for modern health industry[J]. Ad Hoc Networks, 2023, 141: 103094.
[7]CHENG X B, JIANG R, PEI B, et al. Dynamic group authentication and key agreement protocol for D2D secure communication in 5G networks[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(5): 918-928. (in Chinese)
[8]CAO X F, DANG L J, FAN K, et al. A dynamic and efficient self-certified authenticated group key agreement protocol for VANET[J]. IEEE Internet of Things Journal, 2024, 11(17): 29146-29156.
[9]SHOR P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. SIAM Review, 1999, 41(2): 303-332.
[10]DING J T, XIE X, LIN X D. A simple provably secure key exchange scheme based on the learning with errors problem[J/OL]. Cryptology ePrint Archive, 2012[2024-10-15]. https://eprint.iacr.org/2012/688.pdf.
[11]PEIKERT C. Lattice cryptography for the internet [C]//International Workshop on Post-Quantum Cryptography. Cham: Springer International Publishing, 2014: 197-219.
[12]BOS J, COSTELLO C, DUCAS L, et al. Frodo: Take off the ring! Practical, quantum-secure key exchange from LWE[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. Vienna, Austria, 2016: 1006-1018.
[13]HOUGAARD H B, MIYAJI A. Tree-based ring-LWE group key exchanges with logarithmic complexity[C]// 22nd International Conference on Information and Communications Security. Cham: Springer International Publishing, 2020: 91-106.
[14]CHOI R, HONG D, HAN S, et al. Design and implementation of constant-round dynamic group key exchange from RLWE[J]. IEEE Access, 2020, 8: 94610-94630.
[15]WANG Z Q, YANG Z Y, LI F G. A two rounds dynamic authenticated group key agreement protocol based on LWE[J]. Journal of Systems Architecture, 2022, 133: 102756.
[16]CHENG T, LIU Q, SHI Q, et al. Efficient anonymous authentication and group key distribution scheme based on quantum random numbers for VANETs[J]. IEEE Internet of Things Journal, 2024, 11(13): 23544-23560.
[17]REGEV O. On lattices, learning with errors, random linear codes, and cryptography[J]. Journal of the ACM, 2009, 56(6): 1-40.
[18]LYUBASHEVSKY V, PEIKERT C, REGEV O. On ideal lattices and learning with errors over rings[C]//Advances in Cryptology—EUROCRYPT 2010. Berlin, Germany: Springer Berlin Heidelberg, 2010: 1-23.
[19]GENTRY C, PEIKERT C, VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]//Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing. Victoria, British Columbia, Canada, 2008: 197-206.

Memo

Memo:
Received 2025-01-08, Revised 2025-03-21.
Biography: Jiang Rui(1968─), male, doctor, professor, R.Jiang @seu.edu.cn.
Foundation items:The Project Supported by the National Engineering Research Center of Classified Protection and Safeguard Technology for Cybersecurity (No. C23640-XD-07), the Open Foundation of Key Laboratory of Cyberspace Security of Ministry of Education of China and Henan Key Laboratory of Network Cryptography (No. KLCS20240301).
Citation:JIANG Rui,XU Tengyu.Quantum-resistant dynamic authenticated group key agreement scheme for the Internet of Things[J].Journal of Southeast University (English Edition),2025,41(3):392-400.DOI:10.3969/j.issn.1003-7985.2025.03.015.DOI:10.3969/j.issn.1003-7985.2025.03.015
Last Update: 2025-09-20