Journal of Southeast University (English Edition) June

2001 Vol.17 No.l1 ISSN 1003—7985

A Discrete-Time Stochastic Traffic Assignment Model

Wang Wei' ™

Zhu Zhong’

Qu Dayi’

(' College of Traffic and Transportation Engineering, Southeast University, Nanjing 210096, China)

(*Bengbu Institute of Transportation, Bengbu 233011, China)

Abstract:

A discrete-time stochastic traffic assignment model is proposed. The model provides a discrete-time description

of the variations of flows on a road network during a day or a peak period. The congestion effect at links and link junctions are

taken into account. The first-in-first-out principle is enforced on all links at all periods of the day. A stochastic user

equilibrium assignment is achieved when the tripmaker is unable to find better travel alternatives. A computational procedure

is also presented.
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As an important aspect of the theoretic research of
intelligent transportation systems, the dynamic traffic
assignment models have been developed during last two
decades. According to the methodology, there are four

sorts of dynamic assignment models: computer
simulation  approach, mathematical programming
approach, optimal control theoretic approach and

variation inequality approach. The existing dynamic
assignment models have developed from models, which
can only handle simple network forms and restrict the
trip decision to departure time choice, to models that
can handle both departure time choice and route choice
[1,2] : :

. The dynamic assignment

classes: the

of general networks

models can be divided into two
discrete-time models and the continuous-time models.
The early developed dynamic assignment models
can only solve the problems of a single O-D pair
network connected by parallel routes'’ . Some models
can solve the departure time choice and route choice of
general networks. These models consider that the
traffic condition within a link is assumed to be
homogeneous > . Clearly, this assumption does not
conform to the reality of urban traffic condition. This
paper proposed a discrete-time dynamic stochastic
assignment model, which provides a discrete-time
description of the variations of traffic flow on a highway
network during a day or a peak period. The traffic flow
on links in the model is assumed as two parts: the free
flow and a queue. Travelers are assumed to try to
minimize their total time cost by selecting proper trip
time and route. The first-in-first-out principle is
enforced on all links .
and on link junctions are taken into account. A demand
adjustment mechanism is derived from a dynamic

Markovian model. The state of the dynamic stochastic

The congestion effect on links
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stochastic user equilibrium, traffic assignment, discrete-time traffic assignment

user equilibrium is achieved when no traveler believes
that he can increase his total utility of travel by
unilaterally changing route and departure time. Since
the traffic conditions are described well conforming to
the practical conditions, the model developed in this
paper can model the congestion and incident affection
on traffic condition more precisely.

For the convenience of study, notations are given
as follows:

G(N,A) is the road network with N node and A
directed link;

N 1is the set of network nodes;

A is the set of directed link;

R is the set of origin node, R & N;

S is the set of destination node, S & N;

r is the number of the origin node, r € R;

s is the number of the destination node,s € S;

P is the set of O-D pair;

p is the number of an O-D pair, p € P;

K, is the set of routes connecting the O-D pair p,

pEP;
k is the number of a route of O-D pair p,k € K, ;
Ly, is equal to {i,,iy,*, 1,1, which is an order

link set of route & of O-D pair p;

i1505,""", 1, are link numbers of route k£ of O-D
pair p;

0, (i,) is the link order number of route k& of O-D
pair p, 0,(i;) =1,0,(i,) =2,--,0,(i,) = x, i,
is connected to the origin r, and i, is connected to the
destination s;

A7 is the set of links leaving node i

A7 is the set of links entering node i;

j. is the head node of link @, a = {i,j,{ € A;
i, is the tail node of link a, a = {ia, ]} <. H
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7, is the free flow time spending on going through
link @ (in periods), a € A;

T is the total number of time intervals within the
study time;

At is a time interval;

t is the number of time interval ¢t € T, for the
convenience of expression and calculation, the time of
tAt is represented by time ¢;

T, is the average time spending on going through
link @ if link a is entered at time ¢;

T}, is the time spending on traveling from link i
entered at time ¢ to the end of link x along route k£ of
O-D pair p;

T, is the average travel time spending on going
through route k£ of O-D pair p when the first link of
route k is entered at time ¢;

Q, is the total number of trips between O-D pair
Ps

Q, is the total number of vehicles in interval ¢
which leave the origin of O-D pair p at time ¢;

Qj, is the total number of vehicles in interval ¢
which leaves the origin of O-D pair p at time ¢ along
the route £k, 202,, =Q,, V,EP,teT;

Kk,

PR), is the probability that a driver, traveling
along O-D pair p, will depart at time ¢ and select route
ks

T, is the time required to go through link a
entered at time t, ¢t € T

v, is the number of vehicles entering link a at
time ¢;

%y, is the number of vehicles belonging to O-D pair
p entering link a at time ¢, fo,p =v,Ya€E A,

pcP
€T
%y is the number of vehicles belonging to O-D
pair p traveling along route k entering link a at time
t.

1 Travel Time Mode

Given a time varying traffic assignment, we can
load the traffic flows to the network. Supposing a
vehicle enters link a at time ¢, after spending 7, time
periods ,the vehicle reaches the end of link a at time
t’(t" > t) and joins an existing queue in which there
are w’ vehicles. The number of vehicles in the queue
at time ¢’ is w, = w’ + 1.

The number of vehicles leaving the queue at time
" is determined by an exit function. The exit function
of link a at time ¢/ is the function of w’ and other
factors, denoted by uﬁl , 1.e.

u, = f,(wl ) Vae€ A, €T (1)

The function f,(+) is assumed to be continuous

with respect to its arguments and satisfies f, (. ,*)

a

p
< w .

Since the vehicles in the queue at time ¢’ may
enter the link at different periods of time, the FIFO
principle should be enforced as follows:

74 't ]
u, )

¢ reTI<t
Va€E A,V ET, tET (2)

where u! is the number of vehicles having entered the

. i 4
u, = mm{wa ,maX[O,uu -

link @ at time ¢ ,existing at time ¢’ . w" is the number

of vehicles in the exit queue at time ¢’ , having entered
the link a at time ¢.

Suppose the traffic flows of different O-D pair are
fully mixed on each link a, the traffic flow of different
0-D pair traveling along different routes exiting the
queue is then in proportion to the number of the
vehicles of different O-D pair traveling along different
routes in the queue, i.e.

0 wl =0
k= { wl Cwley/wl ) otherwise Va4,

pEP, EECK,t€T, /€T, t<t (3)

i
aph:

traveling along route k exiting the queue at time &’
having entered the link a at time ¢;w,y is the number

u

where u,, is the number of vehicles of O-D the pair p

of the O-D pair p traveling along route k£ in the exit

queue at time ¢’ having entered the link @ at time .
The number of vehicles of the O-D pair p along

route k exiting link @ in period ¢" can be deduced from

Eq.(3).

u’:z/pk = Z: ufj]’?]-: V a e A » P 6 P’
€Tt
KE K,V ET (4)

The number of the vehicles of the O-D pair p along
route k entering link a at time ¢ must satisfy:

2 uft,)k + Qrkp : aupk Iy €k
d €A
R L (5)
Z Wy otherwise
a'eA;’
0 ifa €k
where 0, = {1 otherwise VYVa€ A, pE P,

ke K,.

The number of vehicles in the queue of each link
can be determined by the number of vehicles entering
the link and the number of vehicles exiting the link.
The free flow time is assumed to be z,. If 7, is an
integer, then all vehicles will reach the exit queue at
time ¢’ = t + 7, . If 7, is a real number, it is assumed
that the vehicle entrance time on the link is uniformly
spread out over the period. Then a proportion [ int(z,)
+ 1 — 7, ] of vehicles will reach the end of the link at
time ¢’ = ¢ + int(7,) and the remaining vehicles will
do so at time ¢’ = ¢ + 7/, + 1 (int denotes the integer

function and let 7/, = int(z,)). It can be got that
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Wity — e i >t+7 +1
/-1 /-1 .
o = w’,fljk ) u‘,fp’,{ D (r, - 7 Yage 1 =1+7, +1
apk = .
(r, - 7, + Dy ift =t+7
0 otherwise

(6)

’M)Z/ = Z Zé\apkwﬁ;k Va 6 A’ t9l/ 6 T
1;6[’k61<p

(7)

wh = > w Ya€A, 1,0 €T (8)

teTle<t
After the above analysis, we study the expected

travel time going through a link which is entered at
different time. The probabilities of exiting link a,
which is entered at time ¢ and ¢ must be firstly
computed.

v, = 2 inlp/f

PEPIER,

If ¥, > 0, then P ff = uﬁf//vﬁ,, Vaé€& A, t,t

€ T, t < t’, where PB! is the probability of exiting

VaC A, tET 9)

link @, which is entered at time ¢ and ¢" .
If v, = 0 , the probability can be calculated
according to four subcases depending on the length of

the exit queue at the two consecutive periods ¢ + 7/, and
i+ 7, + 1.

If wEle”,) — O,WELHT';H) — O,
’

o, -7, +1 ift =t + 7
PB" ={f -7 ift! =t +7, +1

a a

0 otherwise
Ifw!* > 0,w)"%" =0,

T, -7, + 1 ift =1
PBZ:{T”-T; ift' =t+7, +1

0 otherwise
If witJrr(;) 0’wi[+T{:+l) >0,

-7, +1 ift' =t+ 7,
PB" = {ra -7 ift" =17

0 otherwise
If M)ELHT‘;) N O’WSIHT(/’H) > 0,

T, -7, + 1 ift = ¢
PBY = T, — T, ift =t~

0 otherwise

are the periods of time when the last
(t+7)

where t* ,t"

vehicle among the w vehicles and the last vehicle

(t+7 +1)
among the w, %"

vehicles exit the queue
respectively, i.e.

t* = max{i & T‘uf:t > O,t” < t}

¢ = max{t € Tlu' > 0,1 < 1}

Hence, we can get the average travel time going

through link @ which is entered at time ¢.

T. = > (t-¢)PBY VYa€E A 1ET

veTle s
(10)
The average travel time going through the last link
of route p is computed as

T = Z| (t-¢)PB Vi, € A4,
YeET |t >t
P ET, hEK,pEP

The travel time going through route p is calculated
as follows:

Ty = >, PBI((1-1)+ T,
r’€7‘|z’>z
j=i-1,¥i€0,(i),i, €A, aC A,
V.0 E€T, k€K, ,pEP (11)
Ty = Ty (12)

2 The Demand Model

Travelers are assumed to make proper decisions in
the two dimensions of choice (departure time and
route) in order to maximize their utility of travel.
While an individual is assumed to first decision on what
time to depart and then, condition on his choice,
which route to follow. Thus, the probability that a
driver will depart at time ¢ and select route k is the
production of the probability of departing at time ¢ and
the probability of selecting route k£ given at departure
at time ¢. The equation is as follows:

exp(ye, Vi) exp(p V") (13)
2 exp(,u,. Vip) Z exp(pl V; )

kEK EEK
2 p

PR;, =

where Vj, is the measured utility experienced by a
driver belonging to O-D pair p departing at time ¢ and
selecting route kjpy,p, are the scale parameters
associated with the upper level of decision (i.e.
departure time choice )and the lower level of decision
(i.e. route choice ) respectively, s /p, <15 V, "isa
composite variable which expresses the expected
maximum utility from the choice of the alternative
feasible routes at time ¢, and is defined as

V:' = ian} e V"P

Hro X,

Let [tﬁ -D,, 1, + Dp], where D, > 0, be the
desired time period of arrival at the destination of a
driver belonging to O-D pair p. The main sources of
disutility that influence travelers’ choices are travel
time and schedule delay. Following the form used in
existing dynamic assignment models, the disutility is
assumed to be in proportion to travel time , early arri-
val time, schedule delay. The proportion coefficients
are a,f and Byy, respectively. Thus, the utility
function is expressed as

Vi, = aT}, + 8D, | 0, 1= 89, (1, — 1 + T,)
(14)
1 if t < 1),
where 0}, = 0 if ll,ql, <t < l,j?
-7 ift = 13

tkp and tip are the earliest and latest possible departure
time which a traveler following route £ can select.
tiyand t7, are the integer values just smaller than ¢},
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and tip respectively. To guarantee a traveler to reach
the destination on time, tﬁq, and tip must satisfy the

following equations

Ly = tp—D+TZ.; U, =t +D+T,jw

After the utility function belng defined, the
probability PR}, can be calculated. The value of (),
can then be defined as follows:

Qy = QPR (15)

Although the equation has a concise form, the
complexity of the relationships involved in the
formulation of both the demand and the travel time
model do not allow the derivation of analytical
solutions. The equation must be solved by an iterative
algorithm.

3 The Demand Adjustment Model

The dynamic demand adjustment model should
represent the interaction between the transportation
system’s characteristics and individuals’ decisions as
it is directed by their own criteria of choice, and
describe the evolution of the time dependent departure
time rate and travel time distributions over time. For
that, an extra notation is added to indicate the day
variable while the setting of the system remains the
same as before, e.g. Vi, Qp . In the same time, it is
assumed that the user of a transportation network
continuously modify their trip decisions based on the
Thus, a

traveler will either change his current trip choice

information they acquired from recent trips.

searching for a better option, or remain at his current
decision state when he makes trip next time.

Suppose that there is a fraction of FiiAd of
individuals who shift from a departure time ¢ to a
departure time ¢ and switch from route m to route k
during the time interval [ d, d + Ad]. The rate of the
uncertain individual number, following route %k and
departing at time ¢ , can then be expressed as the
difference per unit of time between the number of
individuals of shifting to ¢ and switch to k£ and the
number of individuals of shifting from ¢ and/or switch
from k. Let d¢ — 0, then this rate of change can be
expressed as

d
T

(r, nl)#(t k)

O 23, 25, Fu
(¢, m)# t, k)
(16)
Supposing the utility of a new decision state is
assumed to be independent of the attributes of the
current state, it implies that there is a constant
transition rate out of the current decision state. Thus,
the probability that a tripmaker decides to review his
current trip choice is constant, F|. Let the probability
that a tripmaker will select route & and departure time
t be FY,.

(¢, m) to the state (¢, %) can be expressed as

The transition rate from the decision state

Fl = FiFj, (17)

The travelers who will review their current trip
decisions are assumed to be classified I into two
categories: (D A traveler I belongs to the first category
may alter his current trip decisions in both or at least in
one of his dimensions of choice. @ An individual from
the second category may switch to another route k
remaining the same departure time ¢ . If the ratio of
the number of the first category travelers to the number
of the second category travelers is assumed be
constant. The probability that a randomly selected
traveler belongs to the first category is assumed to be a
constant value F,. The probability that he belongs to
the second category is equal to (1 — F,).

The probability that a traveler I who will select a
route k and a departure time ¢ is given by the following
nested logit

FFI(I _ eXp(/lr {l, ) eXp(/,L] Vkp “ )
klel — 3 *
Zl eXp(#r kp ) Z eXp(#l Vkp[d )

ke K, rET
(18)
The probability that a traveler II who will select a
route k is given by the following multinomial logit
exp(ye, V)
D exply, Vi)

k€K
P

FF} ., = (19)

To determine the utilities, the travelers are
required to have perfect traffic information at time d’
= (d + Ad). However, a traveler cannot obtain any
such information. Therefore, the variables of utility in
above two equations can only be expressed as a function
of w instead of d’ .

Since the trip distribution varies with time, the set
of reasonable route is changing depending on the time.
This variability of the set of reasonable paths gives rise
to the definition of two new sets of routes for each
departure time ¢. The first set includes the routes
which constitute a reasonable choice for a departure
during the interval ¢ both at time d and d”, denoted by
DKZZ , DKZZ = K:,d N Kﬁpd, . The second set includes the
routes which are considered as reasonable choices for a
departure during the interval ¢ at time d but not at d’
denoted by KK , KK = K¢ ~ K¥ = {klk € K A\
k &K'}. A wipmaker first estimates the traffic patterns
that will take place at time d’, and then defines the set
Kltfi . If a traveler has selected a route k & DKZZ will defi-
nitely have to review his current trip choice. Thus, for
the group of travelers who have selected route k € KK
the value of F| will be equal to 1.

Given the values of F, and F,, the number of
vehicles departing during the interval ¢ at time (d + 1)
can be deduced with Eq. (16) and Eq. (17) as follows:
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Q' = Qi - Fi 0
+ FI[Z 2 Q:;;iFZFF;(d\cl

rer GUK”
+ > Qe (1 - F)FF;,
mGDKId
+ > D) QuF, FF,
1€T 61&1(“1
+ > Qu(l = F,)FF}, (20)
mEI\K’d

4 The Computation Procedure

Step 1 Give the initial condition such as the
transportation network characteristics, the
the number of trips for each O-D

set of
reasonable routes K,
pair, the number of trips of each O-D pair for each
route and departure time;

Step 2 Calculating the travel time of each link
which is entered at different time with the traffic
volumes and the network characteristics;

Step 3 Determine the reasonable routes for the
next iteration with the values of travel time;

Step 4 Calculate the probabilities and then the

t

value of Q}, ;
Step 5 1If the value of Q) meet the error
requirement, the iteration ends. Otherwise, repeat

step 2 to step 4.
5 Conclusion

This paper proposes a discrete-time stochastic
traffic assignment model based on the assumption which

=R REL A

Koo

(PHRBRXFRBER,

EN L

provides a better representation of the actual traffic
condition. The demand adjust model is based on the
principle of dynamic stochastic user equilibrium. The
can give better
congestion and incidents on the traffic condition. The

model description influence of
further work is to implement the model in an actual

network .
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