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Abstract:

The expected cost per unit of time for a sequential inspection policy is derived. It still has some difficulties to

compute an optimal sequential policy numerically, which minimizes the expected cost of a system with finite number of

inspections. This paper gives the algorithm for an optimal inspection schedule and specifies the computing procedure for a

Weibull distribution. Using this algorithm, optimal inspection times are computed as a numerical result. Compared with the

periodic point inspection, the policies in this paper reduce the cost successfully.
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Missiles and spare parts of aircraft are stored for a
long time after delivery until the usage and have to hold
high mission reliability at their operations. Moreover,
the reliability of a storage system goes down with time
and it is impossible to judge whether the storage system
is normal or not. So, inspection and maintenance of
the storage system at suitable time are necessary to
maintain the system in high reliability. However, the
system cannot be inspected so frequently because each
inspection costs and causes the degradation of system.
Therefore, an optimal inspection policy of the storage
system should be considered carefully.

Barlow and Proschan'’ summarized the optimal
inspection policy, which minimizes the total expected
cost until detection of failure. Luss and Kander and
Zacks and Fenske® extended it to many intricate
systems. Martinez discussed the periodic inspection for
storage electronic equipment and denoted how to
calculate its reliability just before and after the
inspection. Wattanapanom and Shaw'*' considered the
optimal policy of system where inspections may hasten
failures.

Missiles are composed of various kinds of
mechanical, electric and electronic parts, and some
parts have a short lifetime because they have to
generate high power in a very short operating time.
should be

cumulative operating times of inspections, i.e. a

Such parts exchanged after reaching
prespecified time of quality warranty.
In this paper, we consider the inspection for a

storage system with two kinds of units where unit 1 is
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storage system, sequential inspection, optimal time sequence

checked and maintained at time x;(j = 1,2,-:*,N)
and unit 2 is continuously degraded with time. The
system is replaced at detection of failure or at the N-th
inspection. Under the above assumptions, we derive an
expected cost per unit of time. Next, using Barlow’s
algorithm, we can compute an optimal inspection
schedule {x; ' in Weibull distribution case, and

compare it with that of periodic times.
1 Expected Cost

Considering an inspection policy for the storage
system with unit 1 and unit 2. The system is inspected
and maintained at time x](] =0,1,-+) and x, = O.
Any failure is detected at the next inspection time and
the system is replaced immediately. Supposing that a
prespecified inspection number of warranty is N, i.e.,
the system is replaced at inspection time xy . The time
of any inspection and replacement is negligible.

The system is roughly divided into two kinds of
units. Unit 1 is a new one after every inspection;
however, unit 2 remains unchanged through any
inspections. Unit i (i = 1,2) has a hazard rate
function h,(t), which is the function of instruments
spoiling probability at time ¢. Then, the hazard rate
function h(t) of the system is

h(t) = hy(t - x/q) + hy (1) (1)
where x;, | < t < xj(] =1,2,>,N) and x, = 0.

Thus, the cumulative hazard rate function H(¢) is

H(1) = J;h(u)du _ SHl(xk )
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+H1(t_xj—l)+H2(t) (2)
where H,(t) EJ‘ h;(u)du(i = 1,2), and hence, the
0

reliability F(t) of the system is given by F(t) =
exp[— H(t)] at time .

Now, introducing the following costs: cost ¢, is
required for one inspection; cost ¢, is for time elapsed
failure; and cost c¢; is required for the replacement.
Then, when a failure is detected and the system is

replaced at x; (j =1,2,---,N), the expected cost is
N

Zf" Loy + (2 = )y + ¢ JdF(1) (3)

j=1%
where F = 1 — F. Further, when the system is
replaced without failure at time x,, the expected cost
is

F(xy)(Ne, + ¢;) (4)

Thus, from (3) and (4), the expected total cost

function is

ZJ Ljev + (= ) ez + ¢ JdF (1)
/+ F(xy)(Ney + ¢;)

[er + (g = %) JF ()

i
- cz[wp(t)dt + ¢ (5)
Jo
Next, the mean time that the system fails and will
be replaced is
N

S gdr() (6)

=1

The mean time to replacement without failure at
time xy is

F (o) xy (7)

Thus, the mean time to system replacement is
N

D7 wdF () + F(x)

j=17%

N-1
= Z(xjﬂ - x])F(x]) (8)
FE)
Therefore, from (5) and (8), the expected total

cost per unit of time is
N-1

Z[cl + ey — %) JF(x;) - CZJX\ F(t)dt + ¢
c(x) = = 0

2”#1 - 5)F (%)
(9)

where X = (x;, 2,5, ", 4y).

2 Sequential Inspection Policy

Suppose that the system is inspected at optimal

time x;, < %, < %3 < *** < xy. Then, we introduce

D(a,X) which is given by
D(a,X) = E.(X) - aE,(X) (10)

where
EL(X> = 2[61 + Cz(xj+1 - xj)]F<x/)

_ chwF(t)dt + ey (11)

Et(X) = 2(9@41 - xJ)F(xJ) (12)

We evidently have
D(0,X) = E.(X) >0 (13)

N-1 .
D(e¢,,X) = CIZF(X/) - CZJ ‘\F(t)dt + ¢,
j=0 0

(14)
There is optimal X that minimizes C(X) when
D(c¢,,X) < 0 (See Ref.[1]),i.e.

cliﬂxj) be <o TR (15)
From (11) and (12), (10) is

D(a.X) 2[ (s ma) (ot — ) IF(x)

_ czf“’Fu)dt e (16)

0
Putting dD/Idx; = 0, we have
F(xj>_F<xj—l) Cy

= - - 17

where 0; = x;,; — x;. Once x, is selected, x,, x5,

C, —

can be generated recursively from (17) . Moreover, the

inspection schedule X should satisfy the following

stipulation.
0, < 0, j=12,-,N (18)
5 =0 j=1,2,+,N (19)

In summary, to get an optimal in section policy,
we may solve the following optimization problem.

min| D(a,X) | (20)

s.t. Formulae (18) and (19).

3 Solution of the Model

On the basis of the model (20), we can apply
mathematical methods to gain the optimal policy of
maintenance. Before the actual utilization, we should
conduct a concrete numerical calculation according to
the economical, technical and systematic state at that
time. If the method of numerical calculation to find the
solution of the model (20) is used, it will involve the
following difficulties.

1) Discrete decision variables and continuous
decision variables will mix.

2) The boundary of the feasible region of the
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feasible sets is irregular. Most of the boundaries have
not definite analytic equation; or one part of them has
constraint, the other has not. And, the optimal
solution always doesn’t existence in the boundary.

3) The equations of the mathematical model are
tangling. They are commonly comprised in the
generalized sum, multiply in succession or integral
equation. This increases the errors in numerical
calculation.

4) Because of the diversity of the decision
variable, there are several local minimums in the
geometrical toroidal of the objective function.

To solve the constrained optimization problem
(20), there are many methods, such as transformation
method,

programming and direct search method, etc. These

projection method, successive quadratic
methods make requisition for the fluxionary probability
and continuous the connectedness of the objective
function or the constraint function and the properties of
the convex and concave. But, it is very difficult to
store whether these conditions are contended in this
In the procedures of the actual

adopted  the

algorithm as follows to get the results successfully.

problem or not.

numerical calculation, the authors

Given a,x, while x) in the point, we can
prosecute the exploratory move. If 3k € Z* make &,
< 04,1, then reduce x,, and if §, < 0, then increase

x,. If (&,X;X) is the

‘ D(&,X[;)| in the line « = a, we call the case as

feasible and minimizes
success while the other cases are called failure. The
proceeding of the question’s resolution is as follows.

Stepl e >0,i=0,h = ¢,/10.

Step2 Set a; = 02/2 + (= 1)iih, prosecute the
exploratory move. If it is success, then set @, = «; and
k =0, go to step 4.

Step3 If i < INT(c,/2h), thenseti = i + 1,
g0 to step 2. Otherwise, set h = h/2and i = 0, go to
step 2.

Step 4 Set a, = a, + h/2", prosecute the
exploratory move.

Step 5 If it is success and ‘D(ak5Xak>‘ <

‘D(aA7XaA> , then set @y = a, and £ = 0, go to
step 4. If h/2" = ¢ thenset k = k + 1, go to step 4.

Otherwise, a; = a, and j = 0.

Step 6 Set o, = ap + h/2", do exploratory
move.

Step 7 If it is success and ‘D(aj’Xaj>‘ <
| D(ay, X,)

, then set ay = a;and j = 0, go to step

6. 1f h/2' = ¢ thenset j = j + 1, go to step 6. If a,

= ay, then stop. Otherwise, set o, = azand k = 0,

go to step 4.
4 Numerical Illustrations

As an example, if failure time obeys the Weibull
distribution with the parameter A, we can calculate the
optimal non-periodic inspecting time alignment X~ =
(x, ,x, ,**,xy) for the storage system with finite
inspection. The assigned parameters and calculation
results of the example are listed in Tab.l. From

model(20), the dimensions of C,,C, and C; don’t

affect the optimization of X . As a result, we only
take into account the relative value of C,, C, and C; in
computing. As shown in Tab.1, the cost of storage
increases with m, while the alignment interval of
sequential inspection §; has no clear regularly.

As a reference, the optimal inspection time
alignment for the storage system with periodicity was
also calculated under the same condition and the
results are given in Tab.2. By comparison, the
economic target for the non-periodic storage system is
better than the periodic one, which is consistent with
our expectation. Nevertheless, the non-periodic
sequential inspection is not so operative in its practical
use, In order to solve the application problem in
enterprise, how to apply the segmental quasi-period
strategy when N is relatively large will be our future

research project.

Tab.1 Non-periodicity optimal sequential inspection times X "
m 1.1 1.2 1.3
o 0.3947 0.4818 0.6554
c(x") 0.3947 0.4818 0.6554
X" x; 0; x) 0; %) 0;
0 0.00 147.23 0.00 178.03 0.00 161.45
1 147.23  134.95 178.03 173.38 161.45 155.13
2 282.18 121.97 351.41 171.03 316.58 151.57
3 404.15 107.44 522.43 169.11 468.16 148.38

4 511.60  91.36 691.54 167.27 616.54 144.79
J 5 602.96  73.96 858.81 165.28 761.32 140.04
6 676.92  55.66 1024.09 162.96 901.37 133.07
7 732.58  36.97 1187.05 160.07 1034.44 122.36
8 769.55 18.48 1347.12 156.30 1156.80 106.06
9 788.03 0.73 1503.42 151.29 1262.86  82.68

10 788.76 —  1654.71 —  1345.53 —

Note: N = 10,a = 0.9,¢; = 10,¢5 = 1,¢5 = 100 and A = 1.0x 1073
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Tab.2 Periodicity optimal sequential inspection times X "

m 1.1 1.2 1.3
a’ 0.4438 0.6218 0.6562
c(x™) 0.4438 0.6218 0.656 3
X" %) 5; 5 5; 5 5;
0 0.00 62.15 0.00 42.65 0.00 50.28

1 62.15 62.15 42.65 42.66 50.28  50.28
2 124.30 62.16  85.31  42.65 100.56  50.28
3 186.46  62.15 127.96  42.65 150.84  50.28
4 248.61  62.15 170.61  42.66 210.12  50.28
J 5 310.76  62.16 213.27  42.66 251.40 50.28
6 372.92  62.15 255.92 42.65 301.68  50.28
7 435.07 62.15 298.57 42.65 351.96 50.28
8 497.22 62.16 341.22 42.66 402.24  50.28
9 559.38  62.15 383.88  42.65 452.52  50.27

10 621.53 — 426.53 — 502.79 —

Note: N = 10,a = 0.9,¢; = 10,¢5 = 1,¢3 = 100and A = 1.0x 1073

5 Conclusion

The expected cost per unit of time for a sequential
inspection policy is derived. It has some difficulties to
compute an optimal sequential policy numerically that
minimizes the expected cost of the system with finite
number of inspections. This paper gives the algorithm
for an optimal inspection schedule and specifies the

computing procedure for a Weibull distribution. With
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this, optimal inspection times are computed as a
numerical example, and some useful discussions about

these results are made. The mathematical model and

algorithm in the paper will find application in the

reliable maintenance for the storage of aircraft

missiles. At the same time, the method included in

this paper can also be used in other ways.
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