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Abstract:

The identification problem of Hammerstein model with extension to the multi-input multi-output (MIMO) case is

studied. The proposed identification method uses a hybrid neural network (HNN) which consists of a multi-layer feed-forward

neural network (MFNN) in cascade with a linear neural network (LNN). A unified back-propagation (BP) algorithm is

proposed to estimate the weights and the biases of the MFNN and the LNN simultaneously. Numerical examples are provided

to show the efficiency of the proposed method.
Key words:

The area of system identification has received a lot of
attention over the last two decades. One of the nonlinear
realizations frequently studied is the Hammerstein model,
which is composed of a static nonlinearity in series with a
linear dynamic part'' . The Hammerstein model has
proved successfully in providing a simple nonlinear model
appropriate for a wide number of applications including
actuator modeling, auditory and visual identification,
non-Gaussian signal analysis and nonlinear communication
filtering problems" ~*' .

The identification methods for Hammerstein model
can be divided into two directions. The first one'*’
uses the polynomial to describe the nonlinearity. The
problem is thus transformed into multi-input
single-output (MISO) linear identification problem.
The main drawbacks of this approach are the
assumption that the nonlinearity is of a polynomial form
and the increase of the inputs number in the linear
identification problem. The other one is followed by
different nonparametric methods. One of them>*' uses
the kernels identify the

nonlinearity. The identification of the nonlinearity is

regression estimates to

done separately from the identification of the linear
part. Also there are methods using neural networks to
identify the nonlinearity[s’é] . In [5], a hybrid model,
which consists of an MFNN and an auto-regressive
moving average model (ARMA), is employed to
identify the Hammerstein model. The method proposed
in [6] assumes that the linear part is completely
known.

An identification method using hybrid neural net-

works, which was first proposed for identifying Wiener
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neural networks, nonlinear systems identification, Hammerstein model

model'”’ , is now generalized to the identification of Ham-
merstein model. Here, the nonlinear part is approximated
by an MFNN and the linear part is modeled by a linear
neural network (LNN). Thus a method entirely using
neural networks is proposed. The advantage of this meth-
od is that a unified back-propagation learning algorithm
can be derived to estimate the weights of the MFNN and
the LNN from the input-output data simultaneously. The
method is also generalized to the MIMO case.

1 Identification of SISO Hammerstein Model

Fig.1 shows the structure of the hybrid neural
network including the structure of the MFNN and the
LNN. The HNN consists of an MFNN in cascade with
an LNN model. The MFNN is a typical multi-layer
network with one input, one output, and one hidden
layer. Here, for simplicity of discussion, only one
hidden layer is shown in Fig.1. More than one hidden
layer can be constructed. For the SISO Hammerstein
model, the LNN can be considered as a multi-input
single-output neuron without bias. Note that the inputs
of the neuron are composed of time delayed values of
the outputs of the MFNN and the Hammerstein model.
Moreover, the activation function of the neuron is
selected as a linear transfer function. Thus, the
coefficients of the linear part are represented by the
LNN.

identification methods for the linear dynamics, using

weights  of the Compared to the other
an LNN to model the linear part is convenient to the
derivation of a unified BP algorithm to estimate the

weights and the biases of the MFNN and the LNN

simultaneously.
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Fig.1  Structure of the HNN

The Hammerstein model is represented by the
following equation:

ACg D) y(t) = B(g)x(t) + &(¢) (1)
where x(t) = f(u(t)) is the output of the nonlinear
part; y(t) is the output; u(t) is the input of the
system; and £(t) is the output noise of the system.
The linear subsystems are defined as

ACg") =1+ a,¢g7" + + ayq™" }

B(q™") = b+ big" + -

where qilis the delay operator; n,m are the orders.

2
+ b,q 2

In this paper, the orders n,m are supposed to be
known. The linear transfer function B(q'l)/A(q'l)
is assumed to be stable.

Due to the limitation of length, the learning
algorithms of the weights and the biases of the HNN for
the SISO Hammerstein model are omitted here.
However, they can be easily concluded from the
discussions on the identification of the MIMO case in

the following section.
2 Generalizations to MIMO Hammerstein Model

Two possible structures can be used to describe
MIMO Hammerstein model depending on whether the
nonlinearities are separate or combined” (See Fig.2).
HNN can be extended to MIMO systems with nu inputs
and ny outputs. The corresponding HNN identification
models for the two structures of MIMO Hammerstein
model are shown in Fig.3. TDL in Fig.3 denotes a
tapped delay line whose output vector has the delayed
values of the input signal for its elements.
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1 : Linear dynamics :
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(b) With combined nonlinearities

Fig.2 MIMO Hammerstein model

The difference between the structures of the two
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Fig.3 Structure of HNN identification model

identification models lies in the nonlinearities. In
Fig.3(a), nu MFNNs are exploited to estimate nu
independent nonlinearities respectively. The structure
of each MFNN is the same as Fig.1. Hence, the time
delayed values of the output of nu MFNNs and the ny
outputs of the MIMO Hammerstein model form the input
vector to the LNN whose output &l(t) e ,}Afm,(t)
corresponds to the estimate of the plant at any instant of
time ¢. As shown in Fig.3(b), an MFNN with nu
inputs, single hidden layer, nu outputs is employed to
approximate the combined nonlinearities. Hence, the
time delayed values of the nu outputs of the MFNN and
the ny outputs of the MIMO Hammerstein model form
the input vector to the LNN. Note that the method
using polynomial is not efficient for the identification of
the general MIMO Hammerstein model especially when
the nonlinearities are combined.

The description of MIMO linear dynamic systems

can be written as'®’

Y(t) = —AY(t-1) - -A,Y(t - na)
+B,X(t) + -+ B,X(t —nb) + E(1)
(3)
where Y(¢) is the ny x 1 output vector; X(t) is the
nu x 1 input vector; &(t) is the ny x 1 noise vector;
A, , A, are ny x ny matrices; B,,*-, B, are ny x
nu matrices; and na,nb represent the order of the

model. The input vector is defined as U(t) =

Ly (2) oy, ()",

2.1 Identification of MIMO Hammerstein with
separate nonlinearities

For MFNN, (i = 1,*-,nu), the input is u, ()
and the input to the £ th hidden unit is
nety () = wf (1) u;(¢) + 05 (1) (4)

where w, (1) are the weights from the input layer to
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the hidden layer; Q?k(t) are the bias terms. The
output of the MFNN,; is

x; (1) = Zwiz(t)sig(net?k(t)) +0:(t) (5

where w}); (t)are the weights from the hidden layer to
the output layer; (91(1,‘) are the bias terms; sig( <) s
the activation function of the hidden units. It can be
defined as

sig{a) = (1 —e™)/(1 +e™)

Define the vector 5(()5) = [x,(¢) = x,()]",
Y(t) = [yl(t) y,l),(t)]vr. The input vector to the
LNN is represented by

0*(1) = [X"(¢) - X"(1 = nb) Y'(1 - 1)

=+ Y'(t - na)l' (6)
That is
0 (1) = [;Cl(t) ';Cnu<t) 921('5 - 1)
. fcml(t 1)+ y,(t - na)
oy, (6= na)l’ (7)

Define o%(l =1, ,N;N =nux(nb+1)+ny
x na) to represent the [-th element of the vector 0*.
Note ozi(i = 1,*,nu) are the same as ;cl-(t)(i =1,
).

The output vector of the LNN is i/'( t) =
[5/1(15) &,l}.(t)}T, among which

50 = (Do) j= 1y (8)

where wi(t) are the weights.
To develop updating rules for the weights and bia-
ses of the HNN, the performance function has the form

B = 2 D (50 = 5,(0)) (9)

Thus, according to the BP algorithm, the weights and
the biases of the HNN are updated according to the
following rules:
wi (e + 1) = w (1) + 9(y, (1) = y,(0)) 07 (1)
(10)
wi (1 + 1) = wy, (1) + psig(net); (1))

y gw;u,(t) “50) (D)

0(c+ 1) = 0100 + 72w (5 (0) = 5,(0)

(12)
wh (e +1) = w% (1) + q(wiﬂ»(t)sig "(net), (¢))

x () D) W (1) = 5,(1))

(13)
Gt +1) = 05(t) + plwy, (t)sig " (nety (¢)))

ny

x 2wy (0) =y, (1) (14)

=1

where sig "(x) = 0.5(1 = sig2 (x)) is the derivative of

the activation function.

2.2 Identification of MIMO Hammerstein with
combined nonlinearities

The input vector to the MFNN is U(t) = [u, (1)
“ u,, (¢)]". The input to the k-th hidden unit is
net (1) = D)l () u (1) + 05(1) (15)
ol

where w), (1) are the weights from the input layer to
the hidden layer, 02 (t) are the bias terms.

The output vector of the MFNN is defined as X(1)
=[x, (1) -

% (1) = > wisiglneti (1)) + 0,(1) (16)

where wlki(t) are the weights from the hidden layer to

aAc,m (0)]" among which

the output layer; 0}(t) are the bias terms.

From the previous discussion we know that the
LNN here has the same form as described in Eqs. (6) —
(8). Moreover, the performance function is selected
the same as Eq. (9) and the updated rule of the weights
of the LNN is the same as Eq. (10). Thus, according
to the BP algorithm, the weights and the biases of the
MFENN are adjusted according to the following rules:

wy (6 +1) = wi (1) + ﬁsig(net(,)ﬁ(t))

ny

x 2 wy(y; (1) =y, () (17)

0L+ 1) = 0100 + 7> x wl (o, (1) = 7,(0))
i (18)

W?A(t +1) = w?k(t) + ﬁsig’(net(,)f(t))ui(t)

« D50 = 5,0 k(0 (19)

A +1) = (1) + Vsig’(net(i.(t))

x ST Oy (0) = 5,() wh () (20)

As we all know, due to the complex nonlinear
nature of the neural networks, it is difficult to perform
a convergence analysis of BP algorithm. Most of the
results in the neural networks literature are based on
simulation results. It can be sure that the choice of the
step size may be very important in the convergence of
the BP algorithm. A small step size will make the
convergence very slow while large step size may cause
divergence in the algorithm. Due to the different
structure complexity, the step sizes of the MFNN and
the LNN may be chosen differently to increase the

speed of convergence.
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3 Simulation Results

Example 1

Consider a process with two inputs

and two outputs described by the following equationm :

y, (1) 05 —Ol][ylt—l)]
y, (1) - 0.7y, (2 = 1)
+[_0.3 0.2 [yl(t—2>
0.9 -0.51Ly,(t-2)
1 07]si(u (1)) ¢, (1)
+[o 1][s2<uz<t>>]+[§2<z>]
where the nonlinearities are given by
si(u (1)) = (1=e™)/(1 4+ e*)
s:(uy (1)) = 0.5u;(1)
¢, (t),%(t) are white, zero-mean Gaussian

distributed noises of variances 0.5. The inputs to the
plant and the HNN are random signals whose amplitude

is uniformly distributed in the interval [-2,2]. Both

MFNNs employ 10 hidden nodes and the number of
input node of the LNN is 6. Two identification
procedures of the plant, with noise or not, are
implemented respectively. The BP algorithm employs
two different step sizes, which are 0.1, 0.01 (the
plant without noise) and 0.02, 0.001 (the plant with
noise) , for the MFNN and the LNN, respectively. The
numerical results of example 1 are located in the third
row and the fourth row of Tab.1. The numerical results
of the method in [5] are in the second row. Fig.4
shows the actual and identified nonlinearities when the
noise is not added to the plant.

Example 2  Consider a process the same as the
process of example 1 except that the nonlinearities are

given by
siCuy (8),uy (1))
$oCu (1), u, (1))

e—(ul(t)+u2(t)) )

(1-
(1 + e 10Fm0)
0.25u3(t)u,(t)

Tab.1 Numerical results of example 1 and example 2
Ay A, By Time steps RMSE; RMSE,
. 0.5 —0.1] [—0.3 0.2] [1 0]
Desired value 0.8 —07 09 —05 0 1
0.5027 -0.0951 -0.3034 0.204 4 -0.3155 0.1846
Result of (51 | ) Zo5 g _0,7015] [ 0.8963 - 0.501 8] [—0.0679 0.246 4 0.0113 0.0132
Example 1 0.5000 -0.1001 -0.3002 0.2000 0.3187 0.0000
(without noise) 0.7982 -0.701 1] [ 0.8993 —0.5005:| [0.0012 -0.5102 > 000 0.0043 0.0092
Example 1 0.5029 -10.1088 -0.3111 0.2185 -0.3126 -0.0039
(with noise) 0.7724 —0.6903] [ 0.900 5 —0.4887] [ 0.001 6 0.7575] 20000 0.0076 0.0563
Example 2 0.5001 -0.1002 -0.3000 0.2001 0.3197 0.0141
(without noise) 0.7997 —0.7003] [ 0.9004 - 0.501 9:| 0.007 8 1.0460:| 20000 0.0057 0.0083
Example 2 0.4577 -0.1170 -0.2807 0.1972 0.6455 0.0242
(with noise) 0.806 6 —0.7292] [ 0.8765 —0.4939] 0.0492 0.6589:| 50000 0.0225 0.0821
1.5 4 :
1.0 — Actual — Actual /
- Identified /" 5| Mdentified /
~ 0.5 — V4
S / =
~, 0 < 0 " —
3 3 g
~ -0.5 hrd 4
DY M-} /
-1.0
-1.5 -4 :
— -1 0 1 2 -2 -1 0 1 2
u () up ()
(a) s (b) s»

Fig.4 Actual and identified nonlinearities of example 1

The input to the plant and the HNN is random
signals whose amplitude is uniformly distributed in the
interval [ —2,2]. The MFNN employs 30 hidden nodes
and the number of input node of the LNN is 6. Two
identification procedures of the plant, with noise or

not, are implemented respectively. The BP method

employs two different step sizes, which are 0.04,

0.007 (the plant without noise) and 0.01, 0.01 (the
plant without noise), for the MFNN and the LNN

respectively. Numerical results are also shown in
Tab.1. Fig.5 the identified

nonlinearities when the noise is not added to the plant.

shows actual and
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Fig.5 Actual and identified nonlinearities of example 2

4 Conclusion

In this study, a method for the identification of
the Hammerstein model using a hybrid neural network,
which is consisted of a static MFNN in cascade with an
LNN, has been developed. The use of the MFNN to
model the nonlinearity, compared to polynomial
approximation used in the literatures, makes it possible
to model any kind of nonlinearities. The use of the
LNN to model the linear dynamics is especially
convenient to the exploitation of a unified back
propagation method for the estimate of the weights and
the biases of the hybrid neural network. The two parts
of the

simultaneously. Moreover, the proposed method is

Hammerstein can be well estimated

applicable to MIMO Hammerstein systems with separate
or combined nonlinearities. Simulation results show the

efficiency of the proposed method.
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