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Abstract:

This paper deals with the stabilization of dynamic systems for two omni-directional mobile robots by using the

inner product of two vectors, one is from a robot’s position to another’s, the other is from a robot’s target point to another’s.

The multi-step control laws given can exponentially stabilize the dynamic system and make the distance between two robots be

greater than or equal to the collision-free safe distance. The application of it to two omni-directional mobile robots is

described. Simulation result shows that the proposed controller is effective.
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In recent years, the research on cooperative
control for multiple mobile robots is both extensive and
diverse. Many theoretical issues proposed are full of
challenge. These researches mainly centralize on the
“high level motion planning”, of which the designs of
collision-free scheme is the most representative one.
These control methods can be divided into two catego-
ries, namely, model-based'""* , and sensor-based"’ .
The optimal control problem of coordinating multiple
mobile manipulators translating a grasped object is
addressed in [4]. Based on distributed traffic
regulation, a controller for multiple autonomous mobile
robots operating in discrete space was presented in
[5]. A cooperative hunting behavior by mobile-robot
troops was considered in [6]. But there are few results
in the stabilization of dynamic systems for multiple
mobile robots.

It is well known for a single robot system, that the
study of stabilizing problems is very important, and so
is it for multiple robot systems. But the latter is much
more difficult than the former. Main drawback for the
later, is that the systems have to satisfy a group of
algebra inequalities besides a group of differential
equations. Considered in this paper, is just one of such
problems, i.e., the stabilizing problem of dynamic
systems for multiple mobile robots by using the concept
of inner products which are concerned with the
distribution relation between current positions of robots

and aim positions of robots.
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1 Problem Formulation

An industrial mobile robot is required to have
some functions such that it can freely travel within a
confused factory and achieve accurate positioning in a
work station. To this end, an active investigation is
now focused on the study of omni-directional mobile
robots'”’, instead of a conventional mobile robot with
two independent driving wheels, or with front-wheel

handing and rear-wheel driving. If the system models

are exactly known, by using state and input
transformations, those dynamic systems can be
transformed into the form

X1y = Up, Unp = Tyy Y = Up, Up = T

where (x,,y,) and (x,,%,) denote the mass center
coordinates of robot R, and R, , respectively. z; with 1
= 1,2 are new control inputs.

Consider the hybrid system composed of the above
two omni-directional robots(called R, and R,) of the

form
{9:61 = un»l:Ln = 711’ {xz = u21’l:521 = Ty (1)
Yi = UnsUp = Tp Yo = Up,Up = Tp

Let (x,(0),%,(0)) and (x,(0),y,(0)) denote

the initial position coordinates of R, and R,,

(1 ()i () and (x,(),y,(f))

denote the final position coordinates of R, and R,,

respectively,

respectively. Let
R,(0) = (x,(0),5,(0))
R,(0) = (x,(0),5,(0))
R (f) = (x,(f),5:()
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Rz(f> = (xz(f>,9/2(f>>
Under no confusion, one will use (x,,%,), (x,,7%,)
or R, (¢t),R,(t) to denote this position coordinates
respectively.

For convenience, define the distance between two
robots in the following form.

Definition 1 The distance between the two
robots R, and R, is defined by

Pl=‘x1—x2‘+‘y1—y2‘ (2)

Property 1 Setting

02 = <x1 —xz)z"‘()’l —9’2)2 (3)
then p; = p,.

Suppose d, is the smallest distance under the
sense of 01 between mass center coordinates (xl ,yl)
and (x,,y,) of two robots without collision (this is
always called collision-free safe distance (CFSD)).

Elementary conditions, designing feedback control

such that robot R, moves from R, (0) to R, (f), and
robot R, from R, (0) to R,(f) without collision, is
that

P](x1<0>’x2<0)> dy (4)

Pl(%(f)ﬂh(f)) d, (5)
This kind of boundary conditions are called feasible
boundary conditions(FBC) .

Definition 2 System (1) is called stability to
target points R, (f) and R,(f) satisfying (5) on the

domain D C R?, if there exists a controller r; with 7,

=
=

j = 1,2, such that, for arbitrary initial state x(0)
satisfying (4) in D, the solution of the system from
this initial state has the properties with

(D) x>,y >y (N0 =1,2),u; >0,
i, = 1,2,as t > o

(i) p(Co (1), (8))5 (02(20),52(2))) = dy, ¢
= t,, in which d, is collision-free safe distance.

This type of the stabilization is local stabilization,
and if D — R®, it is called global stabilization.

Main Problem For target states R,(f) and
R,(f) satisfying (5), the controller Ty with 1 = 1,23
j = 1,2, is to be designed such that the closed system
(1), for arbitrary initial state R, (0) and R, (0)
satisfying (4), have the properties with

(1) 2, (6) = 2, (f) sy (8) > 5, (f) s uy (1) >0
(i,j = 1,2),as t >

(i) p((x; (), y,1 (1)), (2, (2),7,(2))) = dy,

t=tg.
2 Controller Design

It is assumed that the vector from the target point

to the initial point of robot R,, noted a, = (x,(0) —
2, (), y,(0) = y,(f)), is parallel to the initial velo-
city vector f3, (u,(0), u,(0)). The same assumption
is given for robot R,, and noted a,(x,(0) — x,(f),
v, (0) = 3,(f)) and B, = (uy(0),uy(0)).For
example, robot at rest falls into this case. If collision
is not considering, it is very easy to design state
feedback controller such that the closed system is

globally stabilized to the target points for the system

(1) . Let

2 (1) = (1) = 2, (f),z() = (1) - yl(f)}

z(1) = 0,(1) = (), 2(1) = y,(1) = y,(f)
(6)

Consider system (1) and choose &k, >

Lemma 1
0,k, > 0. If a; and B, is linearly dependent, the
controller with the form
T == kiz, — kyup,

g =-kz - kuy,

Ty =— kizs — kyuy, tp =-kizg - kyup

is such that robot R, and R, can be exponentially
stabilized to target points R, (x,(f),y,(f)) and R,
(x,(f), ¥, (f)) along straight line, respectively.

Proof Omitted (It is easy to show by knowledge
of linear system) .

It may be said that, the control scheme, driving
two robots both moving to their targets along straight
line, is most directed and time-least one. However, if
two robots travel together at the same workspace, using
above convenient and fast method, collision may
happen because of the inappropriate distribution
between initial points and target points of two robots.
This s

collision-free problem while stabilization is realized.

required to consider cooperation and

What ones call collision-free problem is that the
distance between two robots must be greater than or
equal to FBC required in the whole controlled
procedure. It is easy to obtain the controller just
satisfying collision-free conditions.

Lemma 2 Let the initial time ¢, = 0 and the
initial velocities of two robots be zero, i.e. u; (0) =0
with 7,7 = 1,2,--. Let p,(0) = p,(R,(0),R,(0))
= dy. Choose 0 < k < 1,k, > 0, setting w, = u, -
uy — k(o = wy) w0y = wp = up — k(y, = y,),the
controller of the form

Ty = Ty = kQuy = uy) - kjw,

| )

Ty - T = k(uy -
is such that p,(R,,R;) = dy, VY1t = 0; p,(R,,R;)

>+ ®,as >+ .

uzz) - kyw,
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Proof The lemma can be proved by differenting
w, and w, respectively and substituting (7) into (1).

We now consider under what conditions collision
between two robots will not happen using the controller
described by lemma 1. Furthermore, find the method
to deal with collision-free problem when the conditions
are not satisfied.

Suppose
s(T) = 2 (T) = x2(T),0(T) = y(T) = y,(T)
b(T) = up(T) - uy (T),d(T) = up(T) - un(T)
o1 = 21(f) = x2(f),02 = y1(f) = y2(f)

a(T) = s(T) = 61,¢(T) = v(T) - 0,
(8)
where T is an arbitrary initial time for system (1) .

Consider the behavior of the system moving from
arbitrary time T'.

Lemma 3  Let the states of the system (1)
satisfy FBC. The domain D, in Euclidean space R® ,is
defined in the form

D = {xlso, + vo, = min{s> + v°,07 + 03!,

x € R*}
Take £ such that
{ | b(T) |+ [d(T)] \b(T)\+\d(7')\}
2V (1) + (1) = dy) 2(J/ % + 63 - dy)
(9)

k = max

=

The controller of the form
ty = =2Kz = 3kuy, tp = -2k z, — 3kuy,
Ty = =2k zy — 3kuy , Ty = — 2Kz, — 3kuy
makes the closed loop system composed of (1) and
(10) satisfy

(i> As t —> 9xi(t) g xi(f),yi(t) g %‘(f)a
uij(t) —0,fori,j = 1,2;

o

(i) o((x1,91),(x5,92)) = dost = T.

Proof The lemma is easy to be proved by using
linear system theory and linear algebra theory.
Note that s(T)o, + v(T)o, is the
inner product of vector (s(T),v(T)) and (5,,0,),

Remark 1

which, from (8), just denotes the inner product of the
two vectors, one is from the position of a robot to
another’s, the other from the target point of a robot to
another’s. Lemma 3 shows that, if the inner product is
greater than the norm’s square of any one of the two

defined by (10) can

exponentially stabilize two robots to their targets

vectors, the controller
without collision.

The controller expressed by lemma 3 is dependent
on the initial positions of the two robots. Consider next

the design independent of the original positions of the

two robots.
Corollary
(1) satisfy FBC at the initial time ¢, = 0. In Euclidean

Suppose that the states of the system

space R?, define a domain of the form
D = %x\sal + vo, = min{ s> + Uz,df + a%%,
w,; =0,i,j =1,2
Arbitrarily take positive number £ > 0, when the initial
value belongs to the domain D, the controller of the
form
Ty == 2kz = 3ku, 7t = - 2k 2z, — 3kuy,

Ty = = 2k zy = 3kuy Ty = — 2k z, — 3kuy

is such that the closed loop system composed of (1)

} (11)

and (11) has the properties with
(i) The two robots can be stabilized to their target
points R, (f) and R,(f) on the domain D;
(ii) (0((901 79/1), (xz,yz)) = d,, t =0.
Proof

to that used in lemma 4. Here omit.

The proving method is completely similar
We now consider that, when the conditions
required by lemma 3 are not satisfied, how the
information of target points is employed to design the
feedback control such that the states of the system
satisfy these conditions. Once these conditions hold in
the given time, system (1) will be surely stabilized by
the controller expressed in lemma 3.

Suppose that the initial velocities of the two robots
are nonzero. If the collision-free measure is taken just
when the distance between two robots equals CFSD d,,
the collision may not be avoided due to the inertia of
the robots. Therefore, it is necessary to take a measure
in advance in order to avoid collision. For
convenience, the collision-free measure may be taken
when the distance between two robots equals 2d,, .

Let o, be an arbitrary position number with the
property o, > 2d, and the initial velocities of the two
robots are nonzero. The conditions for collision-free
measure to be taken are defined as

d]: {01((901 ’yl), (xz’yz)) = Po

dy: dpy/dt < O

dy: so, + vo, < min{s® + 0>, 07 + 05}

The conditions d;, and d, show that the distance
between the robots will be rigorously smaller than p,,
unless the measure is taken at the present. By Lemma
3,d; shows that the controller given in lemma 3 cannot
be insured that the distance between the robots will be
smaller than the safe distance do and collision may
happen. Next, the design of the feedback control with

no collision is under consideration when the above
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three conditions are all satisfied.

Let T denote the time satisfying condition d, , d,,
d;. From d,, (2) and (8) gives

o (1) = [x(T) = (D) [+ | 3, (T) = 7, (D) |

= |s(D) |+ [v(D)] > 2d,

which means

| s(T) | > dyor|v(T)] > dy

The following definition,

(12)

for convenience, is

introduced.
Definition 3

defined as
c o0%0

g((j):{l g =0

It is easily seen that g(c) has the properties with (D
g(c) %0, Yo € R; @ og(c) =0, Yo € R. The
equality holds, if and only if 6 = 0.

A function g(a):R%R \ {0} is

Lemma 4  Assume the system (1) satisfies the
T. By

(12), without loss of generality, let |5(T)‘ > dy,

conditions d; ,d,,d; at the initial time ¢, =

and choose the positive number m, , m, such that

my | g(a) | (|s(T)] = dy)
[ gCa) [ (To(D)]+ dy)

Let w, = wuy — uy — myg(o,), wy = uyp — uy

(13)

m, <

— m,g(0,). Take the positive number k, such that

(‘ 14)2(T)| + ‘ 1,4)2(7')‘ )N/ mi g (o) + my g (a,)
| mig(o)o(T) = myg(oy)s(T)| ~ dy

by = 2 2 2 2
m g (51)+ng (e3)

(14)
where s(T) and v(T) is defined by (8). The
controller of the form

T, =Ty — Ty =- kyw
1 11 21 1 ]} (15)
T, = Tp - Ty =— kiw,
is such that
D)o ((xsy1)s (52,52)) =do, V= T;
i) Setting
o1 + 0% - o15(T) = 6,0(T) +k—1l | 610, (T) + 0w, (T) |
7=

myg(oy)oy + myg(a;)a,

whent > T + T, one obtains (%, — x,)o; + (y, —
¥2)o, > 01 + 05.

Proof

solved by differenting w, and w, respectively and

Firstly, x, - x, and y; — y, can be

substituting (15) into (1). Secondly, using algebra
theory can prove it.

Remark 2

7y and 7, — 7y are designed. Therefore, there is

In the previous lemma, just 7, —

much free space to design z; (i,j = 1,2). The manner
avoiding other robots depends on how to use such a

space. For example, if 7, and 7, are indepently

designed and 7,; and 7, are accordingly chosen, this
implies robot R, avoiding robot R, without condition.
Conversely, so is it. If 7|, and 7, are indepently
designed and 7, and 7, are accordingly chosen, this
implies to turn right or turn left when robot R,
approaches robot R, .

Remark 3
that the

positions(which are the functions of time ¢) and their

The statement 2 of lemma 4 shows

distribution relation between the robot’s

target points will surely satisfy the condition expressed
in lemma 3 in a given time. Therefore, the system can
move to its targets without collision by using the
controller given in lemma 3. However, it is clear that
the condition expressed in lemma 3 also holds if (x, —
w)oy+ (y1 = y2)oy > (% - xz)z + (y) - 9’2)2-
Unlike the previous condition, this one is uneasily
estimated in analytic manner. But it can be regarded as
a condition to be checked if the condition in lemma 3
holds. In the following theorem, the whole condition
expressed in lemma 3 is regarded as the checked
condition to determine the time of switching
controllers.

In lemma 4, the design of controllers is given just
under the assumption |s(T)| > d,. For the case
lv(T)| > d,, we have the following result.

Corollary Let ¢ = T denote the initial time of
the system (3) satisfying the condition d,,d,,d;. Let
lo(T) | > d, and take the positive number m,; and m,
such that
m, | g(a)| (Jo(D)] - dy)

’g(52>‘<|S(T)|+ dy)

Setting w, = uy — uy — my g(o,), wy, = up —

(16)

m, <

Uy — m,g(c,), choosing the positive number k, of the
same form expressed in lemma 4, we have that all the
results stated in lemma 4 hold by using the controller
given in (19).
Proof

completely similar to that used in the proof of lemma 4.

The method proving this corollary is

Here omit.
Summary the previous statements, the scheme to
stabilize the system (3) can be written as follows.
Theorem Suppose that ¢, = 0 is the initial time
of the system (1) satisfying FBC. Choose p, > 2d,,
and D, D are defined by lemma 3 and its corollary
respectively. The domain D, R® is defined as
D, = %x|(01(R1(961’9’1)’R2(x2’}’2)) = 01,% € RS%
The algorithm to stabilize the system (1) on the

domain D, can be written as
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Step1 If x(0) € D,the controller is taken in
the form
ty = - 2Kz, = 3ku, , 7ty = - 2k*z, — 3kuy,

Ty = =2k zy = 3kuy 7ty = - 2Kz, - 3ku22} 17
where z; is defined by (6) for (i = 1,---,4), k > 0,
5(0),v(0),a(0),5(0),c(0),d(0) by (8). Stop.

Step 2 If x(0) € D, take the controller of
(17), and then check the following conditions.

Condition 1  When x(¢) € D,let T denote the
present time, choose & such that (9). The controller is
taken in the form (10). Stop.

Condition 2 Suppose x(t) €& D and the
conditions d, ,d, ,d; are all satisfied. Let T denote this
time. If ‘ s(T) ‘ > d,, choose the positive number m;,
and m, such that (13).If | u( T)‘ > dy, choose the
positive number m; and m, such that (16) . Setting w,
= Uy — Uy — m1g<01>’ Wy = Up — Up — m2g(dz),
and choosing the positive number &, such that (14).
Take the controller of the form (9).

Step3 When (x, - x,)0, + (v, = v2)0, >
min | GT + a% 8+ 0, go to check condition 1 of step
2.

Remark 4

1 holds. From the corollary of lemma 3, we know that

Suppose condition expressed in step

system (1) can be stabilized using the controller of
(11) without collision. Suppose condition 1 expressed
in step 2 holds. We know from lemma 3, that system
(1) can be stabilized using the controller of (11)
without collision. When condition 2 in step 2 is
satisfied, from lemma 4 and its corollary, one deduces
that the condition expressed in lemma 3 is surely
satisfied in a given time, and then come back to step 2
to check condition 1, which is what step 3 is said. Of
course, the two conditions in step 2 are just sufficient.
If these conditions are not always satisfied, system (1)
can be stabilized by the controller proposed in (17)

without switching controllers.
3 Simulation

Let d, = 0.5 m, the initial positions be (x,, y,)
= (1,4), (x,,5,) = (=1,0), the initial velocities
be u,,(0) = 0m/s, u,(0) = 0m/s, u,(0) = Om/s,
Uy (0) = 0m/s,the target points be (x,(f),y,(f)) =
(2,0.5), (%, (f),y,(f)) = (3,3.5). The controller
is taken as the form expressed in the theorem. The

response of the system (1) is illustrated in Figs.1 - 4.
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4 Conclusion

For the dynamic system composed of two
omni-directional mobile robots, we give a stabilizing
controller such that the two robots can move to their
target points from arbitrary initial positions satisfying
the feasible boundary conditions to target points
satisfying the feasible boundary conditions without
collision. The inner product used in the paper is the
key to deal with the problem. lis optimistic that the
method proposed in this paper can be expanded to the
dynamic systems composed of three or more

omni-directional mobile robots.
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