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Abstract: Using module class Cp = {M

VxE M,x R T =0,y T¢€ 7} , we introduced the concepts of

Cy-finitely generated module, Cp-finitely presented module and Cp-regular ring. We also discussed the criterion for

Cy-regular ring, and the relations between Cp-regular ring and Cj- FP injective module.

Key words:

Regular ring is an important concept in ring
theory. In this paper using module class C; =

{M‘VxéM,xR@ T:O,VTG.?}, we define

the concepts of Cp-finitely generated module and
Cy-finitely presented module. Using these concepts,
we approach the similar characterizations of regular in
torsion theory.

Throughout this paper, all rings R are associative
rings with identity and all modules M are unitary
R-modules.

Definition 1 A module M, is
generated module, if My is a finitely generated module
and M, € Cy.

Definition 2 A module M, is
presented if there exists an exact sequence 0 > K— F

Cp-finitely

Cr-finitely

— M — O, where F is a finitely generated free module
and K is a Cp-finitely generated module.

Definition 3 A module M; is C;-FP injective
module, if every Cp-FP module F satisfies Ext'(F,
M) = 0.

Definition 4 A ring R is Cg-regular ring if for
each Cp-FG ideal I of R and a € I, there exists x €

R such that ¢ = axa.

1 Main Result

Theorem 1 Let (.7,.72) be arbitrary torsion

theory, Cyz = {M‘ VxE M, xR T = 0,VT€.7},
then (1)=(2)—=(3). Where

1) The direct limit of Cg-FP injective module is
C-FP injective module;

2) R is right Cj-coherent ring;

3) If X is C-FP injective module, then X' =
Hom, (X, Q/Z) is C-flat module.
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Proof (1)—(2) Let F be an arbitrary FP
module, L be an arbitrary C;-FG submodule of F.
Suppose (m;); is a direct system. Since L is FG
module , the morphism ¢: liam Hom(L,M;) —
Hom( L, limM;) is monomornhism.Now we proof ¢ is
epimorphi;m. For arbitrary morphism «: L — liinMi ,
since (M, ), is direct system, direct system of injective
module E(M;) 5 M.. By 1), lilnE(Mi) is Cg-FP
injective module. Since lim is exact functor, there
exists a monomorphism ¢:]ilnMi — lilnE(Mi). For
morphism ¢a: L — lilnE(Mi), because lilnE(Mi) is
C,-FP injective module, by proposition 2.5, there
exists a morphism f3: F — liinE(Mi) with 8i = ¢a,
where i is morphism L — F.So we have a commutative

diagram with row exact (See Fig.1).

0> L — F
v v \
0 —limM,—2> limE(M;)—> limE(M;)/limM,~ 0

Exactness of the direct limit

Fig.1
Since F is FP module, then limHom( F,E(M,))
= Hom( F,limE(M,)) .For morphism (3, there exists a
unique morphism ¥: F— E(M,) with L,y = f3,where
L; is embedding morphism of M; to lim M; . Since hp =
0 and ga = Bi, hBi = 0. Therefore compound morphism
L—F— E(M])—gJ’E(MJ)/M, is O under the direct
limit. Since L is FG module, we can suppose compound
morphism ¢’yi = 0 when j is big enough, we have a
commutative diagram with row exact(See Fig.2).
Since @'yt = 0,we have imyi ¢ Kerg’ = imi’,
then there exists 6: L — M; with 7i = 0, so [;yi =
lii’6. By li}’ = ﬂ,ﬁl = (pa,then ,QL = lii’ﬁ, pa =
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3

’ ¢/
0> M —> E(M;) —E(M)/M;~>0

Fig.2 Commutation diagram with row exact
[;i’0 . Because i, ¢ are embedding functors, a = [0,
Hom( L, lilnM,» ) — leHom( L,M,) is epimorphism.So
liinHom( L,M;)— Hom(L, liinMi ) is isomorphism, L

is FP module,i.e. R is a right C;-coherent ring.

(2)=(3) Let X; be Ci-FP injective module
and [ be an arbitrary C,-FG right ideal of R, then
there exists an exact sequence 0—>I—> R— R/ —0.
Clearly R/I is Cy-FP module, so we have a long exact
sequence: — Hom(R,X) — Hom(I,X) —
Ext' (R/I,X,) — ---Since Ext' (R/I,X;) = 0, there
exists an exact sequence:0 — Hom(R/I,X,) —
Hom(R, X;) = Hom(/7, X;) — 0.Because (/7 is an
injective module, there exists an exact sequence:0 —
Hom(Hom( 7, X;), Q/Z)%Hom(Hom(R,XR) . Q/Z)
— Hom(Hom(R/I,X,),0/Z)—0. Since [ is C,-FG
ideal of R, R is Cy-coherent ring,then I is FP ideal.
Clearly R,R/I are FP ideals,so Hom(Hom(/7,X),
Q/Z) =Hom(X,Q/Z) @ I,Hom(Hom(R,X),Q/Z)
= Hom(X, Q/Z) ® R,Hom(Hom(R/1,X),Q/Z) =
Hom(X,(Q/Z) ® R/I.Thus there exists an exact
sequence : 0> I ® Hom(X,Q/Z) > R ® Hom(X,
Q/Z) > R/l @ Hom(X,Q/Z)—>0.Hom(X, Q/Z) is
Cr-flat module by Ref. [2].

Remark Regular ring is Cg-regular ring.

Theorem 2  Let(.7,.72)be any torsion theory,
Co = {M vy € MaRQ T =0,yTE T Then

the following statements are equivalent for ring R.

(a) R is Cy-regular ring;

(b) If I is any Cg-FG right ideal of R, then for
any YV a € I,aR is a right ideal generated by an
idempotent element;

(¢) Every Cx-FG right ideal of R is generated by
an idempotent element;

(d) Every left R-module is Cy-flat.

Proof (a)=(b) Suppose [ is an arbitrary
Cr-FG ideal of R.V a € I, since R is Cg-regular
ring, there exists x € R with @ = axa.let e = ax,
then ¢ = ax * ax = ax = e, and aR = axR = eR.

(b)=(a) Let I be an arbitrary C,-FG ideal of
R,a € I. By (b), aR is a right ideal generated by an
idempotent element, namely there exists idempotent
element e with aR = eR, so there exists x € R with e

= ax.Since e is left identity of eR,then ea = a and
a = ea = axa, VY a € I. Therefore R is Cg-regular

ring.

(a)=(c)
R,a,,"*,a, be generators of I,then I = _gilaiR.By (a)

Let I be an arbitrary Ci-FG ideal of

& (b), V a;R, there exists idempotent e; with a,R =

e.R,s0 I = 21 e;R and e,RE€ Cy. To proof right ideal [

is generated by an idempotent, we only need prove if e, f
are idempotents and belong to Cy-FG ideal I, the ideal
eR + fR of I is generated by an idempotent. First we
have eR + fR=eR + (f— ef) R, e, f belong to I,s0 we
have f— ef€ I. Since 1€ Cy, there exists x € R with f
—ef=(f—ef)x(f—ef). Hence f' = (f - ef)x is an
idempotent and ef * = 0,s0 eR + fR = eR + f'R. Be-
cause e=(e+f ' —f’e)e,f =(e+f' =f'e)f’,
we have eR + fR=(e + f' — f’e)R. That is eR + fR
be generated by (e + f’ — f’e), then [ is generated by
an idempotent .

(¢)=(d) Let I be an arbitrary Cyx-FG ideal of
R .By (c),there exists an idempotent e with / = eR,
then [ is direct summand of R,so the exact sequence 0
— [ > R— R/I—0 is split exact sequence,and 0 —
I— R — R/I — 0 is pure exact sequence. For an
arbitrary module M, we have exact sequence:0— I &
M—> R M—> RIIT® M—0, so M is Cy-flat
module.Since M is arbitrary, hence any R-module is
Cy-flat module.

(d)=(a) Let I be an arbitrary C,-right ideal of
R and a is an arbitrary element of I. For each ar &
al ,we have arR Q T = 0, YV T € 7, (ar € I),s0 al
€ Cir. Let B = Ra,then B is a left ideal of R.By
(d), A/B is Cy-flat module. For canonical injection
i:aR — R, there exists a canonical morphism: ¢: aR
® R/B— R ® R/B = R/B, it is a monomorphism.
Since aR ® R/B = aR/(aR + B)(See Ref. [1]),
B) — RI/B is
monomorphism, Ker¢ = aR « B,i.e. aR + B = aR
B. By B = Ra,we have aR + Ra = aR () Ra,that is
aRa = aR ()| Ra. Clearly @ € aR [\ Ra,so there

canonical morphism ¢ : aR/(aR

exists ¥ € R with ¢ = axa,i.e. R is a Cg-regular
ring.
Lemma 1 Let (.7,.%) be an arbitrary torsion

theory, C; = {M‘ Vxe M, xR T =0,¥yT & .7,
if any Cp-FG right ideal of R is direct summand of R,

the R-module M is Ci-FP injective module
oExt' (R/II,M) = 0.
Proof — Clearly. Because R/I is C-FP

module.
« Suppose Ext' (R/I1,M) = 0 for all C4x-FG right
ideal /. Let f:N — M be an arbitrary morphism,
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where N is a C-FG submodule of a finite generate free
module F. Use mathematical induction for generator
number of F.

When n = 1,F = R, clearly this proposition is

identity.
Suppose the free module F’ is generated by k(k
< n — 1) elements, and the morphism of F’ from

Cx-FG submodule to M can all extend to the morphism
of F'to M. If F is free module generating by n
elements, then there exists x € F with F = Rxe  V,
where V is free module generated by k(k < n - 1)

elements. Suppose [ = {r € Rim& N+ V},then

there exists isomorphism I = N/(N () V).By Ref.
[2],1is Cx-FG module. Because any Ci-FG of R is

direct summand, so [ is direct summand of R, and [ is

a projective module,i.e. N/(N () R) is a projective
module. So the exact sequence 0 > N () V—> N —
N/I(NOV)—0is split exact sequence and N [ V is
direct summand of N, then N [ V is FG module. VY «
EVAN,x&EN.Since NE Cy, xRQQT=0,¥T
€ N () V & Cy. By supposing, for morphism

f‘ . : N () V—> M there exists a morphism g: V— A
NV

=/

NOV NN
with 8(n +v) = f(n) + g(v), clearly 0 is extension
of gand f.Let ¢:1 — M with ¢(r) = 0(rx).Since
Ext' (R/I, M) = 0, morphism Hom(R, M) — Hom( I,
M) is epimorphism, and there exists morphism ¢: R —

with g .Let morphism 0:N + V—> M
y

M with g!}‘ = ¢.Let function g: F — M with g(v +
I
) = g(v) + ¢(r),v € V,r € R, therefore Y y €

N, we have y = v, + ryx,where v, and ryx all belong

toNandv()eNﬂ V’g (9”>:g
N

SCoo) + o(rg) = f(wg) + 0(ron) = f(wg) + f(rox)

N’(UO + r0x> =

= f(vg +1rox) = f(y)(rgx € N). Sory € [,gp(ro)
= O(ryx),then g is the extension of f.By Ref.[2],
M is Ci-FP injective module.

Let (.7,.72) be an arbitrary torsion
Vi€ MaR@ T =0,yT €},

Then R is Cg-regular ring & every right R-module is

Theorem 3

theory, Cp = {M

C-FP injective module.

Proof —By Ref. [2], any Cp-FG ideal I of R
is generated by an idempotent element, i.e. I = eR.
Therefore I is direct summand of R, i.e. the exact
sequence 0 > [ — R — R/I — 0 is split exact
sequence, then R/I is direct summand of R,i.e. R/I
is projective module. For arbitrary R-module M,we
have Exty (R/I,M) = 0.By lemma 1, M is C,-FP
injective module.

& Suppose all R-module are Cg-FP injective
module, [ is an arbitrary Cz-FG ideal of R. Then [ as
a right R-module is Cg-FP injective module. For
C,-FP module R/I we have Ext, (R/I,I) = 0,i.e. for
exact sequence 0 —> [ — R — R/I — 0, there exists
exact sequence 0 — Hom(R/I,I) = Hom(R,I) —
Hom(/,I) — 0. For morphism 1,,there exists
morphism «: R — [ with o = 1,,i.e.0—>[—> R —
R/I — 0 is split exact sequence,where [ is direct
summand of R.Then there exists idempotent element e
such that I = Re,so R is Cg-regular ring.
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