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Abstract:

In this paper performances of wavelet-transform-domain (WTD) adaptive equalizers based on the least-mean-

square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum

mean-square-error (MSE) and the steady-state excess MSE of the WTD adaptive equalizer are obtained. Constant and

time-varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WID LMS

equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in

time-domain.
Key words:
Adaptive  equalizers are widely wused in
communications. Equalizers of this type are generally
implemented in time-domain by tapped-delay-line
(TDL) forms, and the Widrow-Hoff adaptive LMS
algorithm is used to obtain the equalizer parameters.
One drawback of the LMS algorithm is that its
convergence speed decreases as the ratio of the
maximum to the minimum eigenvalue of the input
auto-correlation matrix increases ' .

To increase the convergence speed of the LMS
algorithm, a known self-orthogonalization algorithm can
be used. An important property of the algorithm is
that, in theory, it guarantees a constant rate of
convergence, irrespective of the input statistics'" . The
objective may be realized by using the Karhunen-Loeve

transform (KLT).

dependent transform, which makes the KLT impractical

However the KLT is a signal-

for real-time applications.

Narayan et al. proposed transform-domain LMS
(TRLMS) algorithms[z], where the discrete Fourier
transform (DFT) and the discrete cosine transform
(DCT) were used in the LMS algorithm. DFT and DCT
provide predetermined sets of basis vectors that are
good approximation to the KLT, and indeed, the
TRLMS significantly improved convergence. After
that, Lee and Un discussed the performance of TRLMS
adaptive digital filter (ADF)"' .

Because of its flexibility in base choice and good
properties of time localization and frequency selection,
the discrete wavelet transform (DWT) is a good
alternative of FFT and DCT in adaptive algorithms.
Many researchers studied various ADF structures based
on DWT*"", and these structures have encouraging

Received 2001 — 10 - 09.

wavelet, transform-domain, wavelet-transform-domain, LMS, adaptive equalizer

performances. Some researchers used DWT-ADF in
system identifications and equalizations and obtained
good results®* ' .

Although the WTD adaptive equalizer is known to
improve convergence speed significantly, its general
properties including the steady-state performance and
the convergence condition are not known yet. In the
following sections we will discuss the general
performance of the WTD adaptive equalizer.

The subsequent content of this paper is organized
as the following. In section 1, we briefly review the
adaptive equalizer, the related theory of DWT and the
structures of DWT based adaptive equalizers. In
section 2, we discuss the performance of the WTD
adaptive equalizer using constant convergence factors,
which includes the steady-state MSE, the condition of
convergence and the speed of convergence. In section
3, we study the self-orthogonalization algorithms in
we analyze the

WTD

algorithms. Finally, in section 5 and 6, we give some

WTD equalizers. In section 4,

computational  complexities  of adaptive

simulation results and conclusions.
1 DWT and WTD Equalizer
1.1 Adaptive equalization

In this subsection we give a very brief review of
adaptive equalization, mainly the linear equalizer
based on the LMS algorithm.

It is known that the algorithm for adjusting the tap
weight coefficients of the TDL adaptive equalizer may
be eXEressed in the form

Cn+l = Cn + le”C" <1)
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where C, denotes the estimate of the weighting

coefficient vector; X

n

is the vector of received signal
samples; e, is the error signal at the nth iteration and

o 1s a positive number chosen small enough to ensure
convergence of the iterative procedure.

1.2 DWT

As we know, if x(t) is any square integrable
function, then it can be decomposed onto a set of
square integrable basis functions, constructed by
dilating and translating a single wavelet

x(t) = er,/f : ‘/’j,k(t) (2)

jkEZ
where g[)]-,k(t) = 27]'/2(/1(27% — k) are wavelet bases
and ¢( t) is called the mother wavelet base.

The coefficients of the bases can be calculated by

the following equation:

= [0 (0 3)

13 ”

which is defined as wavelet transform, where “ %
denotes complex conjugate.

For the sequence {x(n){ sampled from x(z),
the DWT coefficients of the sequence is

rio= 2ox(n) - ¢ (n) (4)

n

The accumulation in Eq. (4) can be written in a
concision form. Assuming vector X = [x(n), x(n -
1), -+, x(n - M +1)]" denotes the input sequence,
where [+ ]" means vector transposition, the coefficient
vector of DWT can be represented as

U=V¥-X (5)
where U = [U,, U,,**, U, ], in which U;(j = 1,2,
-+, J) is the coefficient vector in the jth scalar, and
¥ is wavelet transform matrix, which is determined by
scaling functions. In practice, the wavelet transform
coefficients are computed using a dyadic sub-band tree
structure, and so the wavelet transform matrix is
constructed from wavelet filters.

Observing that we pass a periodic sequence of
period N through a cascade of 2-band regular perfect
reconstruction filter (RPRF) banks and critically
decimate the output of every filter, we obtain the DWT
coefficients of each scalar.

To compute the output of a cascade of RPRF banks

we evaluate the product[“‘

Qlogz<w>(Qlong)-l("'(Qz(QlX)“') (6)
where
I, o (¥)-k-1 0
= 7
o . b )
InEq. (7), I, denotes an n x n identity matrix
and D, is the transform matrix in the kth stage of RPRF

banks

. (8)

HO(A‘)
and it can further be represented as an (N/2") x
( N/2") matrix

b |

et ¢ 0 0 0 & e

& ey 0O 0 O

0 0 ¢ ¢ o o 0
D=l o 000 @ o @

¢y co e - 0 0 0

0 0 ¢ ¢ ¢ c =+ 0

where cli and cg(k =0, 1, 2,:+) are the coefficients
of high-pass and low-pass filters respectively.

The decimation by 2 is taken into account in this
matrix by shifting twice the coefficients of the filters to

the right.

Let the “wavelet transform matrix” be

Y = Qlo;:z(s\") Qlog:z(N)—l.”Q2Ql (10)
It is shown that for RPRF banks

[0 A | (11)

which means that ¥ is an orthogonal transform matrix.
1.3 WTD adaptive equalizer

From above subsection, we see that, like FFT and
DCT, DWT 1is an
advantages over FFT and DCT can be found in wavelet

orthogonal transform. Some
transform: (D Compact support in time-domain of
and  Gibbs
phenomena associated with Fourier transforms applied
to consecutive blocks of data be avoided; @ Good

frequency selection properties make the frequency-

wavelet bases make discontinuities

domain be precisely divided apart; @ Simplicity of
filter structure makes it easy to implement by
hardware. All of these properties make DWT an
encouraging candidate in transform-domain adaptive
algorithms.

The structure of DWT based equalizer is shown in
Fig.1.

In Fig.1, the input sequence X is the received
signal, the vector U is the DWT of X and the desired
signal comes from the training sequence or decisions at
the output of the detector. The output of the equalizer is

y,=W'-U (12)
where W, = [ W05 W15 s W,y N 1" is the coefficient
vector. The update algorithm is

W,.. = W, + uU,e, (13)
where f’\V,,, denotes the estimate of the coefficients vec-
tor, and g is a constant or time-varying positive

number.
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Fig.1 Structure of WTD adaptive equalizer

1.4 Wiener solution

According to Ref. [3], it is easy to demonstrate
the following results:

1) The Wiener solution of the coefficients of
equalizer in WTD is
=y .c (14)
where c,, is the Wiener solution in the time-domain.
2) The minimum MSE of the equalizer in WTD
and that of the time-domain ¢,

Emin = s1:1in ( 15)

2 WITD LMS Equalizer Using Constant
Convergence Factor

)

opt opt

w

€ are identical, i.e.

min

In this section, we assume that the convergence
factor p is constant as in standard LMS algorithm. We
discuss the convergence conditions, the time constant

and the steady-state MSE of the WTD equalizer.
2.1 Convergence condition

It is known that, in the time-domain, the
sufficient condition for the statistical expectation

E[ C,] converging to C, is
2
0<pc< m (16)

where tr( R, ) denotes the trace of the matrix R, , and
R, = E[X,X,] = No’ (17)

where 6> = E[xx, ].

In WTD, the convergence condition should be

0 < ©n < ’[I‘(iu) (18)

and
tr (R,)) = wr (E[LU,U']) =
tr (E[PX,X'¥']) =
E[tr (YX,X'¥")] =
E[lr (P'WXX!)] =

Elw (X,X,)] =

r (E[X,X,]) = r (R,) (19)
So in WTD, for constant factor, the number p can
keep the same as that in the time-domain to ensure

convergence.

2.2 Steady-state MSE

The steady-state MSE of the LMS algorithm is
expressed in terms of the minimum MSE and the excess

MSE ¢, as

Ele ] = e + €4 (20)
where
1 1 2
€p = 7#tr(Rx)€min = E#No‘aemin (21)

From Egs. (15) and (19), it is easily shown that
Ele.] in the WTD and that of in the time-domain are

identical.
2.3 Time constants

The time constants of the MSE process Ele, ],

which denote the convergence speed, are

1 .
T, = 22, l<i< N (22)
where {24, ,1 << N} are the eigenvalues of R, in
time-domain or R, in WTD. The convergence

procedure is mainly controlled by the minimum
Since R, = WRVY' and ¥ is an
orthogonal matrix, the eigenvalues of R, and R, are
identical. Therefore the WTD and the time-domain
LMS algorithms have the same convergence speed.

eigenvalue.

From above discussion, it is concluded that if
constant convergence factor is used in WTD LMS, the
convergence performance will not be improved at all.

3 Self-Orthogonalizing WTD LMS Equa-
lizer

Let the factor ¢ in Eq. (13) be

© = 7R (23)
where 7 is a constant number, and then we get the
self-orthogonaling algorithm.

W, =W, + 7R,'Ue, (24)

The convergence condition and the excess MSE

are
2 2

0 e = 25
ST <WRR)™N (25)

and

1 -1 1

€p = Eytr(R” Ru)emin = ?’}/Nemin (26)
respectively. If o> = 1, they are all the same as the

constant factor case. However, for the matrix that
controls the convergence is the identity matrix and all
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the eigenvalues are identical, the convergence speed
improves significantly. The convergence is controlled
by ¥ only no matter what the statistic of the input is.

The next work is to estimate R, and thus compute

u
R;'. If the inputs are white noise sequences, the
covariance matrix of the inputs is diagonal and it is
easy to compute R} .

Fortunately, Ref. [11] tells us that, assuming a
zero mean random process f(n), DWT make the cross
covariance between x, and «x, (the nth and the mth
elements of f(n)) decay exponentially fast to zero as
the distance between m and n increases. Hence the
cross covariance matrix of the samples of f(n) be
closer to a diagonal matrix. The following simulations
in section 5 illustrate the above conclusion.

If the matrix is very closer to a diagonal one, we
can set elements outside the main diagonal to zero and
get an approximation to the matrix to simplify the
computation. Then we can get a simple WID LMS
algorithm

@, (n+1) = ,(n) +62m<yn>e<”)f‘;(”’

m=0,1,-, N-1 (27)
where (), means the mth element in the sequence
and o>, (n) is the power estimate of the mth element in
vector U. The estimate is updated by

(n+1)=p-6%(n)+ (-] u(n)
(28)
where 0 < 8 < 1 is called forgetting factor.
Considering the cross covariance of signals in
different scales of vector space is less than that in the
same scale. Then the WTD LMS adaptive mechanism
can be represented as

w.i(n+1) = w,(n) +55(—{L>e<n>mik<n>

(29)
where (+),, means the kth element in jth scale.
o;(n) is the estimate of the average power for the out

of scale j, and is updated by
a?(n +1) = - af(n) +

K
1 J
(1-p) >0 [w. () ]” (30)
T k=1
where K; is the element number in jth scale.
A more complex algorithm to compute R;' can be

seen in Ref. [11], where M-band filter banks and

Cholesky factor was used to invert matrices.
4 Computational Complexity

In the following discussion on evaluating the

computational efficiency of an algorithm we consider

only the number of multiplications, which is not
dependent of the processor architecture. Here only
real-valued case is considered.

We analyze the computational complexity of DWT
from Eq. (5) first. To compute the DWT of a finite
N-point segments of datalx(n) },‘;V:] , we assume that
the signal {x(n)! is periodic with period N, and the
DWT of the vector X is then to compute WX . For the
wavelet transform matrix ¥ is an N x N matrix, the
number of multiplication is N* at most. If the not zero
element number L in each row of ¥ is much smaller
than N (L< N), i.e. W is a sparse matrix, we need
to perform LN multiplication operations to compute
WX only. Of course the number of multiplication LN is
much smaller than N*. Considering L is independent
of N, the number of multiplication is O(N).

Then from the cascade of filter banks, we discuss
the computational complexity of DWT further. We
know that each stage of the filter banks has the same
structure and filter parameters (see Fig.2). We
assume that each filter has M coefficients: ¢), ¢,

LoM-1 0 1., M-l
, Cog O Ci, Cpy , €]

, where ¢, and ¢, are low
pass and high pass filter coefficients respectively. In
the first stage of the filter banks, the N-point segments
are filtered and decimated. From Fig.2, it is clear that
the number of multiplication is 2MN. However we can
use a more efficient structure, which is shown in
Fig.3. The h° and A" in Fig.3 are the odd and even
parts of the filter coefficients. The operation is reduced
to MN. Considering the linear phase restriction h(n)
= h(N -1 - n) and the relations between high pass
and low pass h (k) = (- l)kho(l — k), we only need
to perform 1/4 MN multiplication. In the second stage,
because the samples out of the low pass filter are
decimated by 2, the multiplication number is 1/4M -
1/2N. So the total multiplication is

1/AM(N + 112N + 1/4N + -=- ) < 1/2MN (31)

@
®

Fig.2 Low and high pass filters

Then we consider the computational complexity of
the updating algorithm of Eqgs.(27) and (29).

From Egs. (27) and (28), we can see that to
update c:;,,,(n) we need to perform 6N + 1
multiplications and  including DWT the total
multiplication of WTD LMS is

(12M + 6)N + 1 (32)

For the case of Eq. (29), we can see that to
compute each a?(n + 1) in Eq. (30) we need to
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Fig.3 Efficient structure of filter bank

perform K; + 2 multiplications, and to compute all the
a?(n + 1) we need to perform N + 2J multiplications,
where J < log,(N) is the maximum scale of DWT. So
to update the WTD LMS adaptive equalizer coefficients
in Eq.(29), we need to perform multiplications

(12M +4)N +2] + 1 (33)

Using Eqgs. (29) and (30), we need some less
computation than Eqs.(27) and (28), and if M < N,
the computational complexities are all O(N).
Compared to DCT and FFT based adaptive LMS
algorithmm , the computational complexities of DWT
LMS do not increase.

5 Computer Simulation Results and

Discussion

In this section, we present some computer
simulation results of WTD LMS equalization. The
structure we used is shown in Fig.4.

7 (n)

Transversal filter |

|/ W(n)

Adaptive weight- @
control mechanism|

e(n)f +

[T ()

Fig.4 Block diagram of WTD LMS equalizer

P U

Noise

In Fig.4 the input we used in the transmitting
point is a sequence of random sign functions and the
channel has the following impulse response, which is
controlled by “w” in the equation:

h(n) = {é[l ool Zn-2))] n=1203
0 otherwise
(34)

Passing the input through the low pass channel,
we got the received signal in the equalizer. Then we
used a 16 points sliding window to truncate the received

X(n). After DWT

processing, we got vectors U(n). And in the following

sequence, and got vectors

parts, LMS algorithm was used to update to coefficient

factor W(n).

Firstly, we illustrated the diagonalization ability
of DWT. We assumed that R, and R, denote the
covariance matrix of X(n) and U(N), respectively.
We computed the ratios of the diagonal norm (norm of
elements in the main diagonal) to the Frobenius norm
of the same matrix. The more ratio means the more
diagonal of course. The ratios are shown in Tab.1. In
Tab.1, we used different channel parameter “w” in
Eq. (34), and different Daubechies’ wavelet bases,
“db2”, “db4” and “db8”. For a stationary zero-mean,
first-order Markov process, the DCT is asymptotically
equivalent to the KLT. So DCT was considered in the
table as a reference.

Tab. 1

Ratios of diagonal norm to Frobenius norm

w

Base

2.9 3.1 3.3 3.5 3.7
R, 0.8758 0.8313 0.7957 0.7688 0.7490
db2  0.9671 0.9571 0.9496 0.9444 0.9408
R, d¥ 0.9741 0.9666 0.9613 0.9577 0.9553
db8 0.9829 0.9781 0.9747 0.9725 0.9710
DCT 0.9937 0.9917 0.9901 0.9889 0.9881

From Tab.1, we see that the correlation matrix is
nearly diagnalized after wavelet transforms, and in
these selected bases, “db8” is the best one. After
wavelet transform, the diagnalization of the input
sequence correlation matrix is very close to that of DCT
— the approximation of KLT of low pass processes.

Then we present the computer simulation results of
WTD LMS equalizer learning curves compared with that
of standard LMS. In simulations the signal to noise
ratio (SNR) is 30 dB, the wavelet used in our wavelet
transform based adaptive filters is the Daubechies’ D8
wavelet. The update algorithms we used are Eqs. (29)
and (30).

For different w in Eq. (34), the spread of eigen-
values of the correlation matrix R is different. We
compare the convergence properties of LMS and WLMS
under some bad conditions: w = 3.5 and w = 3.7
when the spread is 54.22 and 156.32 respectively, and
good conditions: w = 2.9, and w = 3.1 when the
spread is 6.31 and 11.79 respectively.

The learning curves for the algorithms mentioned
above can be seen in Fig.5 and Fig.6. Each of these
MSE curves is obtained by taking average of 100
independent computations of the squared error data and
the worst 10 samples were excluded.

The curves indicate that, as expected, for the
same condition (eigenvalues spread), the WTD LMS
equalizer converges faster than that of LMS. Especially
when the spread is large, the convergence rate is
improved distinctively.
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Fig.5 Learning curves of IMS. ((1) w = 3.5, (2) w = 3.7)
and WTD LMS ((3) w = 3.5, (4) w = 3.7)equalizer
10! -

10-2

Ensemble averaged squared error
S

1073

0 500 1000 1500
Number of iteration n

Fig.6 Learning curves of LMS ((1) w = 2.9, (2) w = 3.1) and
WTD LMS ((3) w = 2.9, (4) w = 3.1)equalizer

6 Conclusions

1) Discrete wavelet transforms, under some
conditions, are orthogonal transforms and it can be
operated by cascade of filter banks, which results in
reduced computational complexity.

2) DWT can be used in adaptive equalizer. Using
constant convergence factor, the convergence condition,
the steady-state MSE and the time constants of WTD
LMS are all the same as those of standard LMS. Using

self-orthogonal algorithm, WTD LMS largely improve the

convergence performance of equalizers, especially when
the eigenvalue spread of the covariance matrix of inputs
The computational complexity of WID LMS
using time-varying factor is O(N) only.

3) Computer simulations show that WTD LMS
performance than the

is large.

have Dbetter convergence
time-domain LMS.
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