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Abstract:

Matching pursuits algorithm (MP), as an adaptive signal representation upon overcomplete fundamental

waveforms, is a powerful tool in many applications. However, MP suffers from distinguishing a doublet structure. In this

paper, the authors proposed an algorithm called compete matching pursuits (CMP) , which can overcome this shortcoming and

performance very well.
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Signal expansion is one of the major approaches in
many applications. The traditional way is to represent a
signal by complete bases, where signal decomposition
is well defined and unique. An alternative and poten-
tially more general method of signal representation uses
an overcomplete dictionary, which allows a greater
number of bases than samples in the input signal.
Under an overcomplete dictionary, the decomposition
of a signal is not unique, because some bases in the
dictionary have representations in terms of other bases,
which give us the possibility of adaptation. In addi-
tion, it is possible for us to obtain a representation
which possesses both sparsity and superresolution.

It is a challenging job to represent a signal upon
an overcomplete dictionary. Here the common idea is to
find the best matched atoms by evaluating the degree of
matching between the signal and different combinations
of atoms, which will result in insufferable compu-
tational burden. Therefore, we should seek some other
methods which have both high performance and
acceptable computational burden. Several methods are
already available in finding the “optimal” represen-
tation of a signal by an overcomplete dictionary. These

]
ranges from general approaches, such as frames'

[

basis pursuit’”’ (BP) and matching pursuit®’, or clever

schemes derived for specialized dictionaries, such as

the best ]
pursuit®’ . All these methods have their advantages and

orthogonal basis* and high-resolution
shortcomings. For example, basis pursuit, based on
global optimization, may have better performance than
other methods but its implementation is computationally
intensive. Though MP does not have the same good
performance as BP, it also works well and its
computational complexity is much less than BP. MP

has been used in many areas successfully, especially in
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matching pursuit, compete matching pursuit, overcomplete representations

video coding. We will focus on the improvement of
matching pursuit.

This paper is organized as follows. In section 1,
the matching pursuit algorithm for achieving overcom-
plete expansions is reviewed and discussed. In section
2, we introduce compete matching pursuit, which will
reduce the effect from drawback of MP. Section 3
presents numerical examples of the performance of

compete matching pursuit.
1 Matching Pursuits
The

decomposing a signal into superposition of basic
1) that belongs to a

concept of matching pursuits lies in

functions (words) g, (|| g, I =
redundant dictionary D . After greedily choosing a g,

& D, the signal f can be decomposed into
f= <f"gr0>gr0 +Rf <1>

where Rf is the residual vector after approximating f in
the most matched direction. Clearly g, is orthogonal to
Rf, hence
2
L= [Foe [+ R (2)

To minimize || Rf || , one might choose g, such that

‘ s gro>‘ is maximum or suboptimal in some sense.

Then, one can substitute this residual vector to original
f to repeat this procedure. The operation continues
iteratively until either a collection of expansion
coefficients is generated or some energy threshold for
the residual is reached. After m times iterations, the

signal f can be decomposed into

f= SR g8, + RS 3)

If we stop the algorithm at this stage and only
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record the partial structure book ({R'f, g, DT ) ockenm

the summation of (3) recovers an approximation of f,
with an error equal to R"f.

MP algorithm works well for many types of signals.
But the greedy optimization algorithm is myopic, which
misses entirely the doublet structure. The following
example illustrates this drawback in which we use cubic
b-splines. Scared versions of this cubic b-spline are of
the form g(2jx). The twin peaks function f, illustrated
in Fig.l(a) with dashed, is the sum of two cubic
b-splinesat the same scale but different position. Let
the dictionary D consist of cubic b-splines at a wide
range of translates and scales, including those used to
construct f. Take the twin peaks as an example, the
first element chosen by MP is the one which does not
match either of the two functions that are the true
componets of f. Fig.1(a) shows the original function
dashed and the first element chosen by MP (solid).
The first MP residual is shown in Fig.l(b) (solid) .
Since MP chose a “wrong” atom in the first iteration, it
is forced to choose a serial of atoms to correct this

€error.
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Fig.1  Process of MP for twin peaks function. (a) Twin
peaks function and first element chosen by MP; (b) First
residual generated by MP

2 Compete Matching Pursuits

We know that MP misses the doublet structure

because of its myopia, an improved method, namely

compete matching pursuits(CMP), is proposed here to
help MP work correctly as the following.

Step 1
and wj are selected from the same dictionary as used in
MP, where

1
w

The first two most contributive atoms w|

argté}lea;)d (frg)|
w; = arg max \(f,g,>\
gﬁﬂf:,#w}
After that, two residual signals, R|f and R)f, can be
attained

Rif = f-{frw)w

R;f =f- <f’wé>wé

Step 2w}, and wi, are selected for R, f as the
two most contributive atoms, while w3, and w3, for
R,f. After that, four residual signals, R} f, R f,
R, f and R, f, can be attained.

Step 3 The energy of the four residual signals is
computed and evaluated, and then two residual
signals, whose energy is the smallest one and the
sub-smallest one, are selected. R} f is used to represent
the residual signal whose energy is the smallest, and
R>f for the sub-smallest one. Atoms w; and w5
correspond to Rf and R3f, respectively. Only R}f
and R>f are kept for future decomposition.

Step 4  The two residual signals, R}f and R;f,
are further decomposed using the similar methods in
step 2 and step 3. The rest may be deduced by analogy
until the energy of one of the residual signals is smaller
than some threshold set in advance or the number of
atoms is just enough.

Fig.2 is an example of how CMP working. If we

2
3 3
wy = Wy RZZf

Rf= Ry f

3 3
w1 = w21

= RS
4

Rif
w3

R'f = Ruf RLf  RhS Rhf
Fig.2 An example of compete matching pursuit

want to use one (two, three, respectively) atom to
represent signal f, we should choose w; (w} and w7,
w3 ws and w) respectively). The bold line in Fig.1
shows the choice of four atoms by CMP.

The algorithm mentioned above selects the first
two most contributive atoms to decompose a signal
respectively at every step. We call it two-branch CMP.
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This algorithm can be easily expended to n-branch
CMP by using first n contributive atoms to decompose
signal respectively at every step. The complexity of the

n-branch CMP is about n times that of MP.
3 Compare CMP with MP

The general MP algorithm cannot distinguish
doublet structures. We then use CMP to decompose the
same twin peaks function with the same dictionary used
in MP and see the performance of CMP. Fig.3
illustrates the first two elements chosen by two-branch
CMP and four-branch CMP, where the CMP can
capture the main feature of twin peaks function and
four-branch CMP has much better performance than
that of two-branch CMP in this example. Since CMP
chooses two reasonable elements in the first two stages,
subsequent elements serve to refine the fit rather than
When

branches increase in CMP algorithm, it can overcome

to correct mistakes from previous stages.

the drawback of matching pursuit of missing doulet

structures eventually.
0.5

0.4

0.3

Amplitude

0.2

0.1

0

0.5

0.4

0.3

Amplitude

0.2

1
0
t
(b)
Fig.3  Process of CMP for twin peaks function. (a) Twin
peaks function and first two elements chosen by two-branch
CMP; (b) Twin peaks function and first two elements chosen
by four-branch CMP
To illustrate the energy compaction property of MP
and CMP, consider the following situation. A source,
which is randomly generated according to a uniform
distribution on the N-dimension unit sphere, is to be

transform coded. The dictionaries are also randomly

generated on the N-dimension unit sphere. Fig.4
shows the results of a simulation with V = 8 and using
4 terms to represent the source. The plot shows the
fraction of the signal energy in the residual when using
MP(dashed), two-branch CMP(solid) and six-branch
CMP(doted) . Dictionary size M ranges from 8 to
2048.

We can see from Fig.4 that the performance of
CMP is higher than that of MP. The performance of

CMP is improved with the increase of branches.
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Fig.4 Comparison of energy compaction property with
different branches of CMP

4 Conclusion

MP cannot resolve closely spaced features and
basis pursuit is computationally intensive. A revised
version of MP, CMP is developed and demonstrated in
this paper. MP uses greedy algorithm to pick the most
contributive atom at each step. CMP still uses greedy
algorithm, but it will use the result of the current step
to decide which atom it will use in the last step. By
this way, CMP can see faraway than MP, so it

overcomes the drawback of MP in some sense.
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