Journal of Southeast University (English Edition) Mar.

2002 Vol.18 No.l1 ISSN 1003—7985

Decomposition-Based Visual Function Specification
and Auto-Generation of Function”

Shen Jun™

Gu Guanqun

(Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

Abstract:

On the software module, this paper proposes a visual specification language (VSL). Based on decomposition,

the language imitates men’s thinking procedure that decomposes a problem into smaller ones, then independently solves the

results of every small problem to get the result of original problem (decomposition and synthesis). Besides, the language

mixes visual with specification. With computer supporting, we can implement the software module automatically. It will

greatly improve the quality of software and raise the efficiency of software development. The simple definition of VSL, the

principle of auto-generation, an example and the future research are introduced.

Key words:

Software model has been going through three

phases: procedure-oriented, object-oriented and
component-oriented ' . The development of the three
phases is spiral rather than throwing off and repelling
each other. The granularity of software development is
bigger and bigger. Therefore, the thinking focus of
software developer has shifted to design stage from
implement stage. The level of abstract is higher and

higher. The

shortened, and the quality of software is improved

cycle of software development is
greatly.

Even through object-oriented modeling and coope-
ration of components have implemented visual develop-
ment at a higher level, i.e. the design level, the
functions of objects and components are implemented
finally based on subprogram, called functions or
procedures, especially to data server objects or
components, and the visual specification and the
automatic generation of subprogram have not gained
the visual

breakthroughs in essential. Therefore,

specification and the automatic generation of
subprogram are the key to ensure the quality of software
and to shorten the cycle of software development.

On the implement of subprogram, according to the

rules of cognition”®’ , this paper proposes a visual speci-

fication language (VSL), based on decompositionm.
It is used to describe the specification of software
module. Based on it, we have developed a visual
development platform that is used to visual design and
verification of

supports the reuse and the

specification”” . With the visual development platform,

Received 2001 — 12 - 17.

software specification, function decomposition, data dependent, visual programming

user only needs to know the domain knowledge, and
quickly accomplishes the design of module decompo-
sition; finally, the specification and the generation of
software module will be implemented automatically. It
breaks the limitations of quick visual design at level of
subprogram.

The rest of the paper is organized as follows. The
simple definition of VSL is described in section 1. The
principle of automatic generation is presented in
section 2. Section 3 gives an example. Conclusion and

some future research are presented in section 4.

1 Visual Specification Language

Based on Knuth’s attribute grammarm , We pro-
pose a visual function specification language. In order
to enhance the comprehension, three basic concepts

are adopted in VSL:
package. They are defined as follows:

module, decomposition and

Module A module is a unit of processing. A
module M may have an input attribute set (IN[M])
and an output attribute set (OUT[M]). It is indicated
by

M(i|,iza""in§01a02,"'a0m)
where M is module name, i,,i,,"*,1, are input
attributes, so {i,,4,,*,i,| = INLM]; o0,,0,,,
o, are output attributes, %ol,oz,“',om} =

OUT[M].
Obviously, the handling of a module can be
descried by a suitable mapping, for example

F(M) Di] X Dl:2 X X Di,,," Du] % DU2 X x D

om

% The project supported by the project of Ministry of China about key fundamental research on application (6209003001) .

#% Born in 1963, male, associate professor.

Decomposition-Based Visual Function Specification and Auto-Generation of Function 29

where D, indicates the value domain of input or output
attribute a .

In order to increase visibility, the module may be
indicated by a graph as Fig.1. The symbols ¥ and 4
the figure indicate and output

shown in input

attributes.

f 01,°"" 5 0y

*ilv'"vin M

Fig.1 Module

Decomposition When the processing of the
module M, is simple enough, we can directly write out
the mapping F(M,) between its input and output
attributes. On contrary, we must decompose the
module M, into some smaller modules: M,, M,,---,
M, . Each smaller module responds to a part of the
processing of the module M,. This is called module
decomposition, and it is described by M, — M,, M,,
=, M, or visual presented in Fig.2. Where M, is

called maternal module, M,,M,,---, M, are called

M,
I

Fig.2 Non-terminal decomposition

sub-modules. When ¢t = 0, this decomposition is
called terminal decomposition. In this case, the
processing of the module M, is simple enough to
directly write out the mapping relation between its
input and output attributes and there is no need for
further decomposition. If not, it is called non-terminal
decomposition. The terminal decomposition will be

presented by M, —- or by a graph shown in Fig.3.

IE

Fig.3 Terminal decomposition

When module M, is decomposed to M, M,,:**,
M, , a set of attribute definitions must be described in
order to indicate the data dependent relation of
attributes in these modules, i.e., how to give the
input attribute value of sub-module and how to get the
output attribute value of the maternal module with the
processing results of sub-module. Each attribute

definition has the general form as follows:

a = f(by,,b,)
where f indicates certain mapping relation; a €
OUT[M;]ora € IN[M,], 1<i<t,and b,,":-, b,

are other attributes of the decomposition.

Generally, a module may have different
decompositions under different cases, i.e. a module
probably has many kinds of decompositions. If d is
used to present module decomposition, d,,d,,**,d,
are used to describe the % kinds of decompositions of
M, . Many kinds of decompositions of M, are described
as follows:

di:My—> M, , My, , M, =1,k
Or presented by specification. In order to indicate
under what condition a kind of decomposition can be
used, we must add a decomposition condition C, to
every decomposition case. C, is usually a logical
expression composed of the input attributes of the
maternal module.

In a word, the decomposition of a module has a
form as follows:

d:My—> M,,M,,---,M, with A, where C,
where C, is the decomposition condition, A, is a set of
attribute definitions.

VSL package A VSL package is a complete
software specification described with VSL. It can be
defined as a triad:

VSLP = (M,D,M,,)
where M is the set of modules; D is the set of
& M is called the initial module,

indicates that this module is the top module of the

decompositions; M,
package, from which the execution of software module
starts.

The definition indicates that a VSLP package is a
group of specification of modules and decompositions.
If the value V,, of the input attribute set IN[M, | of
the initial module M, is given, then (VSLP, V,)
defines a computing tree, the root of which is the
initial module M,; and the vertices are other modules
shown in the course of the decomposition. The growth
of computing tree is controlled by condition of
decomposition. The computing tree is ended when all
vertices are terminal decomposition. Using the data
dependent relation defined by the attribute definitions
in the decomposition, we can figure out V,,,, i.e., the
value of the output attribute set OUT [M,] of initial

module.
2 Principle of Automatic Generation
2.1 To create the data dependent relation

The characteristics of visual specification language

are to describe the modules, the decompositions of

30 Shen Jun, and Gu Guanqun

modules, the attributes of modules and the generation
of definitions of attributes. The data dependent graph
will be constituted corresponding to every decomposi-
tion through detailed analysis of the data dependent
relation among its attributes. Based on it, many kinds
of subprogram corresponding the predicted objective
language can be generated automatically.

In VSL, there are four kinds of data dependent
graphs defined as follows.

2.1.1 Data dependent graphs for module decom-

position (DG,)

DG, is a kind of directed graph which constitutes
the vertexes with the input and output attributes of
module d. Every directed side indicates the dependent
relation of attribute value in A,;. The lined side in the
figure indicates the obvious dependent relation that is
corresponding to an attribute definition. The dotted
lined side indicates the veiled dependent relation that
will be got with computing of the corresponding
module. Assume the decomposition d has a form as
follows:

d:My—> M,,M,,---,M, with A, where C,

The definition of DG, is described as follows:

DG, = (DV,,DE,)
where DV, = {ala € INLM,] UOUT[M,],0< i <
t!, DE, = {{a,b)| b = fla,,,a,) € A,l.

2.1.2 Data dependent graphs for computing tree
(DG;)

DG, is a directed graph that presents attributes

dependent relations in the computing tree T.
According to the decompositions of module in the
course of constituting T, DG, is constituted by

combining some corresponding DG,s. It is defined as

follows:

DG, = (DV,,DE;)
where DV, = {wlw is attributes in computing tree/ ,
DE, = { < w,,w, > | w,,w, correspond the attributes

vy ,v, of decomposition rule d in computing tree T,

and <’l}1 ’1)2> S DE({; .
2.1.3 Data dependent graphs for module (DG,,)

DG, is a directed graph that presents the
dependent from output attributes to input attributes in
module M. It is defined as follows:

DGy = <DVM9DEM)

where DV,, = INLM] U OUT[M],DE,, = {{a,b)|a
€ IN[M],b € OUT.M], 3 path from a to b in
DG, .

The definition indicates that there is a directed
path from a to b in computing tree DG, rooted with M
if (a,b) € DE,,.

2.1.4 Extend data dependent graphs for module
decomposition (DG,)

DG, is constituted by combining DG, with DG

It is defined as follows:

DG, = (DV,,DE])
where DV, = {ala € IN[M,;] U OUT[M,],0
tt, DE; =DE, U {(a,b)|{a,b) €DG, , 0
th.

Obviously, DG,

dependent of decomposition rule d but also the data

I <

<
<i<

includes not only the data

dependent of computing trees that constituted root with
the sub-module of d.

Otherwise, in order to enhance definition and
convenience, two sets are defined as follows:

1) PS,(a): the dependent set of output attribute
a in module M. It is defined as PS,,(a) = { b [{b,a)
€ DG, % 5

2) PS,(a): the dependent set of output attribute

a of maternal module M, in decomposition d. It is
defined as PS,(a) = {blb € OUT[M,],0< i < t,
3 path from b to a in DG, |.

2.2 To generate the subprogram package of
predicted object language

Based on the data dependent relations, the
specification of subprogram given by the user can be
automatically transformed into the subprogram package
of predicted object language. The user can predict the
object language. At present, it can be language C, or
language PASCAL.

The subprogram package of predicted object
language consists of a main function and a group of
declarations of function, in which every declaration of
function is corresponding to a module specification of
VSLP. The main function is generated according to the
specification of the initial module. It includes three
basic steps in sequence: reads the values of the input
attributes of the initial module, calls the function
corresponding to the initial module and gives the
computing results”®’ .

Assume the module M has k kinds of decompo-

Decomposition-Based Visual Function Specification and Auto-Generation of Function 31

sition d,,d,,***,d,, then in language C, the
corresponding declaration of function of module M is as

follows:

void m(intx;,-**,intx,, , int % i, ,Int % y,,)
|
{
)

if (C‘ll) b,ll 5 else

if (Cd2) b‘lz 5 else

ba, 3
|

f

where x,,*, %, are the input attributes of module M;

Y15, ¥, are the output attributes of module M ; Cdl s
=+, G, are decomposition conditions corresponding to
the £ kinds of decompositions of module M; and bd] s
b, are the function bodies corresponding to

respective decomposition of module M .

= =

Each function body bdl(l < i < k) is an

executive statement series. Every statement is an
assignment statement or a function-calling statement.

The algorithm to generate the function body b, is

shown as follows with corresponding language C
function syntax:

1) To independently establish an assignment
statement corresponding to every output attribute of
maternal module and every input attribute of each

sub-module which decompose d;. Obviously, all the

assignment statements are just the A, , the set of

defined attributes in d;. In data dependent graph, it
indicates all directed lined side.

2) To independently establish a function-calling
statement corresponding to each sub-module M in
decomposed d;: M(u,,*--, *, &,), where

u,; &y,
uy, ", u, are the input attributes names of sub-module
M; v, ,0, are attributes names of
sub-module M.
function-calling statement responds the directed dotted
lined side.

3) To get a topological sorted series through

output

In data dependent graph, the

sorting the data dependent graph of d; according to the

attribute dependent relations. The function body b, is

constituted with the statements established in 1) and

2) sorted according to the series.
3 An Example

As an example, how to get the xth Fibonacci

number is presented.

3.1 Specification

This problem only needs a module f(x;v).
Module f has two kinds of decomposition: d, and d,,
which indicate the different computing methods of the

value of v when x < 2 or x > 2, respectively. The

specification is described as follows:

define fib
module f(int x; int v)
decompose f(x;0):: = f(xl;01),f(42502)
with vl = o =15 22 = x = 2; v = vl + 22
decompose f(x;v):: = NULL

with v = 1
end

where x < 2

The visual demonstrating is presented in Fig.4.

They are interchangeable. If the value of input

va| f Ao va| f [Hw

val| f Mol Va2 f (A2 T
with x1=x-1; 22=x-2 with v =1
v=vl+02 where x <2

where x> =2

Fig.4 Visual demonstrating
attribute x = 3, a computing tree will be constructed
as Fig.5. The dotted lines in the figure indicate the
data dependent relation defined by the attributes
definitions. With these attributes definitions, we can

get the value of output attribute v of initial module f to

be 3.

va=3 | f|4p=3
[I |
Vva=2 | f Whyp=2 Va=1| f | 4w=1
_

Fig.5 Computing tree of module f for x = 3

3.2 Data dependent relation

Fig.6 shows the data dependent relation that is
corresponding to the two decompositions, specifica-
tion-based and Fig.4-based.

3.3 Object subprogram package for language C

The generated function body corresponding to the

non-terminal decomposition of module f in Fig.4 is

32 Shen Jun, and Gu Guanqun

vC\)\

Fig.6 Data dependent graphs

described as follows:

xl = x - 1;

22 = x - 2;
f(xl, &v1);
F(x2, &2);
* v = vl + 024

The subprogram package of language C generated

automatically is given as follows:
void f(int x,int * v) {int 02, %2, vl, x1;
if (v <2)%0 = 1;
else {xl = x — 15 22 = x = 2;
f(x1, &vl); f(xZ, &2);
*p = vl + 023
Main()
{int x, v;
scanf(“% d”, &x);
S, &)
printf(“%d \ n”,v);
|

i

4 Conclusion

On the function of software module, this paper
proposes a visual specification language, and gives the
principle of generating automatically the subprogram

package of the predicted object language based on it.

The new ideas will break the limitations of visual
describing of function of module. The efficiency of
software development will be raised greatly, and the
quality of software will be ensured efficiently.

The future researches include: (D The describing
of parallel visual specification and the cooperating of
multi-designer under network environment; (2 The
creating of reuse specification library; ® The transfor-
mation from VSL package to CORBA-based or COM-

based components DL .

References

[1] Feghhi J. Web Developer’ s Guide to Java Beans[M]. Ameri-
ca,1997:2 - 11.

[2] Eddon G, Eddon H. Inside COM + base services| M]. Ameri-
ca: Microsoft Press.1999:5 - 8,21 — 75,385 — 405.

[3] Polya G. How to solve it[M]. Doubleday, 1957:1-3.

[4] Crimi C, Guercio A, Pacini GZ, et al. Automating Visual
Language Generation [J]. IEEE Trans Sofiware Eng. 1998
(16):86~94.

[5] Shen Jun, Cheng Zhengchao. A CASE environment for sup-
porting 2-stage software model[J]. Journal of Southeast Uni-
versity ,1993,23(1) : 100 — 104. (in Chinese)

[6] Knuth D E. Semantics of context-free languages[J]. Math-
ematical System Theory ,1968,2:2.

[7] Henning M, Vinoski S. Advanced CORBA programming with
C+ +[M]. America: Addison-Wesley Longman Inc,1999:33
- 85.

[8] Slama D, Garbis J, Russeu P. Enterprise CORBA[M]. Amer-
ica: Prentice Hall PTR,1999:266 - 271.

[9] Rofail A, Shohoud Y. Mastering COM and COM + [M].
America: SYBEX Inc., 1999:1-19.

E T o @ay T 4L TheE M4& 1% AR K Th € B zh & A

o E

(FéaXFHEINASFE TEZ, % 210096)

m =

AFATEAE AR, A SR T — AP AR A VSL 89 T AL ALAE BLIA 3B 5 %38 B R MAR & 4

AR, A KIAE L L P A R — RPN HLAL G AL, R G IR SR e A — AN D HLEE 1R A
W5 B AL &) HLBE 9] B 44 R AR 45 A Rk KU 1) AL A5 B T3 SEAU 3, VSL B 55 HLAR AR BE M 44
TTAACHE R L B AR AR KK BRI T, R G R TF LR ALHA T VSL#)
MRS AHERRIE, LB, 15 h THE—F R T1E.

KR RAAE, B, BIBRN, TR PR

FESZES TP311.56

