Journal of Southeast University (English Edition) Mar.

2002 Vol.18 No.l1 ISSN 1003—7985

Lossless Mapping from Semi-Structured Data to Structured Data ™

%

Li Wenwu

Jin Yuanping

Tong Mina

(Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

Abstract:

Most semi-structured data are of certain structure regularity. Having been stored as structured data in relational

database (RDB), they can be effectively managed by database management system (DBMS). Some semi-structured data are

difficult to transform due to their irregular structures. We design an efficient algorithm and data structure for ensuring lossless

transformation. We bring forward an approach of schema extraction through data mining, in which different kinds of elements

are transformed respectively and lossless mapping from semi-structured data to structured data can be achieved.

Key words:

The Web has been becoming an important approa-
ch to information acquiring, transmitting and exchang-
ing. The Web data are of certain structure regularity.
But different from structured data in traditional data-
base, they are not in accordance with a concrete data
model. They have the properties of self-description,
dynamic changing and semi-structure. Extensible
markup language (XML) provides well support for
semi-structured data, and becomes the standard of data
exchange in the Web. Self-description of semi-
structured data provides flexibility, but it also takes up
a large quantity of storage space and processing time.
Meanwhile, we are short of efficient and suitable
management mechanisms and query functions for
semi-structured data.

Based on a mapping query language semi-
structured to relational data(STORED)[]] , we develop-
ed a prototype system which can automatically and
losslessly map XML semi-structured data to structured
relational data and the corresponding overflow data
collection. Thereby we can efficiently manage
semi-structured data with mature RDBMS and promote
the application of database technology in the Web. The
transformation from XML data to relational database

data is lossless in the sense that we can expediently

transform RDB data back to original XML data.
1 Lossless Mapping of DTD (or XML Schema)

Document type definition (DTD) formulates the
pattern model of all the element contents in XML
documents. It helps authors to write validated XML
documents. We map DTD to relational database in such

a way that we can check data integrity on operations

Received 2001 — 12 - 04.

semi-structured data, DTD, RDB, schema mapping, DOM, overflow data

using relational DBMS to manage semi-structured data
and get the original DTD whenever it is needed in data
exchange processing.

The mapping scheme maps DTD data into the
following three relational tables:

1) Element table, stores element information such
as father element name, element type, element relative
position, occurrence times, and so on.

2) Attribute table, stores attribute information
such as attribute name, name of the element that the
attribute belongs to, attribute type, default attribute
value, occurrence of the attribute.

3) Attribute _ value table, stores enumerated val-
ues of enumerated type attribute.

We use the following faculty.dtd as an example to
describe the mapping process. Due to the space
limitation, we omit element type declaration of most
“# PCDATA” type elements:

(?xml version = “1.0” encoding = “UTF-8"7)
(IENTITY % sexalign “sex ( male | female)
# REQUIRED”)
(1ELEMENT faculty (teacher * ))
(JELEMENT teacher (name, address +, phone* , student* ,
major * )
(VATTLIST teacher
teacherid ID # REQUIRED
% sexalign; )
(VELEMENT name (firstname, lastname))
(1ELEMENT address (city, street, ((apartment, roomnumber) |
dwelling) ) )
(VATTLIST address
zip CDATA # REQUIRED
addresssort (home | office | lab) “home”)
(VATTLIST phone
areacode CDATA # REQUIRED)
{1ELEMENT student (studentname))

% The project supported by the plan of key university faculty members of State Education Ministry and “333” Talent Plan of Jiangsu Province.

#% Born in 1978, male, graduate.



Lossless Mapping from Semi-Structured Data to Structured Data 47

(VATTLIST student

studentid ID # REQUIRED

% sexalign; )
(VELEMENT major (field))
(VELEMENT firstname ( # PCDATA))

® (reate element table (Tab.1). There are seven
columns in the table with column “elementname” for
element name, “fathername” for father element name,
“datatype” for element type. And the column “min-
Occur” represents the minimum occurrence times of the
corresponding element, and “maxOccur” the maximum

’

. 13 ” “ b
occurrence times. The “ — 1~ stands for “+ o .

Columns of “sequence_num” and “is_ choice” indicate
the relative position of an element within its father
element and whether the element is from a choice list.
These two columns differentiate choice lists of content
particles from sequence lists of content particles and
record relative positions of elements in sequence lists,
and therefore ensure losslessness of element
transformation. Sometimes the relative positions in
some complex elements are difficult to record. In these
cases, we create transitional elements in place of the
complex elements. The field “datetype” of transitional

elements is null.

Tab.1 Element table

elementname fathername datatype sequence _ num is _ choice minOccur maxOccur
address teacher children 2 False 1 -1
address # 3.1 # address null 3 Ture 1 1
apartment address # 3.1 # # PCDATA 1 False 1 1
city address # PCDATA 1 False 1 1
dwelling address # PCDATA 3 Ture 1 1
faculty # root # children 1 False 1 1
roomnumber address # 3.1 # # PCDATA 2 False 1 1
street address # PCDATA 2 False 1 1
teacher children 1 False 0 -1

faculty

For instance, when the element type declaration of
“(VELEMENT address (city,

roomnumber) | dwelling))y’ is transformed, the values

street, ( (apartment ,

of field “sequence _ num” of elements of “city” and
“street” are “1” and “2” respectively, and the values of
field “is _ choice” of both of them are “False”. The
values of field “sequence _ num” of elements of both
“(apartment, roomnumber)” and “dwelling” are “3”,
and the values of field “is _ choice” of them are “True” .
The elements of “apartment” and “roomnumber” have
their own sequence numbers (“1” and “2” respectively)
within their complex father element “(apartment,
transitional element

roomnumber)”. We create a

“address #3.1#"” in place of the complex element

roomnumber)”.  The
“address #3.1#” and “dwelling” are regarded as

“(apartment, elements  of
choice list of child elements of the element “address”;
and the elements of “apartment” and “roomnumber” are
regarded as sequence list of child elements of the
element “address #3.1#” (Tab.1).

® (reate attribute table (Tab.2) for

attribute information of elements.

storing
There are five
columns in the table: “attributename” for the name of
attribute, “elementname” for the name of elements
associated by attributes, “attributetype” for the data
type of attribute, “attributeDefault” for the default
value of attribute and “attibutePresence” for whether

the attribute is required, implied or fixed.

Tab.2 Attribute table

attributename elementname attributetype attributeDefault attributePresence

addresssort address EnumeratedType home # REQUIRED
areacode phone CDATA null # REQUIRED
sex student EnumeratedType null # REQUIRED

sex teacher EnumeratedType null # REQUIRED
studentid student null # REQUIRED
teacherid teacher null # REQUIRED
zZip address CDATA null # REQUIRED

The field “attributeDefault” is set to null if the
corresponding attribute has no default value. Although
many attributes might have no default values and

therefore result in many nulls in the column “attribute-

Default”, the space cost for these nulls would not be
very high because the attribute table is just a small
static table in the whole system.

® C(Create Attribute value table (Tab.3). There are



48 Li Wenwu, Jin Yuanping, and Tong Mina

three columns in the table: “attributename”, “elemen-

tname’, “attributevalue” (enumerated value of attri-
bute) .
Tab.3 Attribute value table
attributename elementname attributevalue
addresssort address home
addresssort address lab
addresssort address office
sex student female
sex student male
sex teacher female
sex teacher male

Attribute _ value table has two usages: (D Store
enumerated values of enumerated type attributes to
achieve lossless mapping of attributes; @ When we
need bind constraints with attribute column on creating
relational table during transformation of XML data, we
can obtain the required information by directly

accessing Attribute _ value table instead of traversing
DTD once more (see 3.1.1).

2 Selection of Mapping Scheme

We illustrate the selection strategy through the

example of faculty.xml.
(?xml version = “1.0” encoding = “UTF - 877)
(!DOCTYPE faculty SYSTEM
“E: \ Documents \ faculty.dld”>
(faculty)
(teacher teacherid = “1003” sex = “male”)
(name)
(firstname) Leon{/firstname )
(lastname) Smith{/lastname)
(/name)
(address addresssort = “home” zip = “210000”)
(city) Nanjing(/city)
(street)Suzhou Road{/street)
(apartment)3 # (/apartment)
(roomnumber)301{/roomnumber)
{/address)
{phone areacode = “025”)4567891(/phone)
<ph0ne areacode = “025">5678912</ph0ne>
<ph0ne areacode = “025”>6789123</ph0ne>
(student studentid = “2003” sex = “male”)
(studentname) Mike(/studentname)
{/student)
(student studentid = “2004” sex = “female”)
(studentname) David(/studentname)
{/student)
<maj0r>
(field) Pattern Recognizalion</field>
</maj0r>

<maj0r>
(field) Artificial ]nle]]igence</fie]d>
</maj0r>
{/teacher)

(teacher teacherid = “1004” sex = “male”)

(name)
{firstname) Tom{/firstname )
(lastname) White{/lastname )
{/name)
(address addresssort = “lab” zip = “210000” )
(city) Nanjing(/city)
(street) Yunnan Road{/street)
<apartment>4 #(/ apartment>
(roomnumber)404</roomnumber)
(/address)
(address addresssort = “home” zip = “210000”)
(city) Nanjing{/city)
(street) Taiping Road(/street)
<dwelling>l # </dwelling>
(/address)
<phone areacode = “025”>1023456</ph0ne>
<phone areacode = “025”>1203456</ph0ne>
(student studentid = “2005” sex = “male”)
(studentname) Wilfred{/studentname)
{/student)
{major)
(field) Local Area Network Techonology
(/field)
{ maj0r>
{/teacher)

</faculty>
2.1 Mapping scheme of individual element table

One of the simplest mapping schemes is to
transform every element into its own separate table,
and the text contents and attributes of the element are
stored in the columns of the relational table. Two fields
(“ElementID” and “ParentID”) are used to associate
parent elements and child elements (Tab.4 — Tab.7).

Tab.4 Teacher table

Parent]D ElementID teacherid sex
0 3 1003 male
0 4 1004 male

Tab.5 Name table
ParentID ElementID
3 9
4 10
Tab.6 Firstname table
ParentID ElementID firstname
9 15 Leon
10 16 Tom
Tab.7 Lastname table
ParentID ElementID lastname
9 21 Smith

10 22 White




Lossless Mapping from Semi-Structured Data to Structured Data 49

Using this scheme, every element instance is
stored as a record in its corresponding table. Its
advantage is that no matter how many elements are in
the XML document, no extra null except the nulls
within XML document is produced in the relational
table. But from Tab.4 — Tab.7, we can see that there
is a one-to-one correspondence between teacher and
name, and name and (firstname, lastname) as well.
They can obviously be merged into one table. If we
create a table for every individual element with two
columns of “ElementID” and “ParentID”, then the two
columns may contain redundant data in most cases.
Furthermore, a large number of connections of tables
are required on the query and update actions, resulting
in substantially decreased access performance. In
addition, the number of the tables can be too big to
manage efficiently due to the one table for one element

transformation.
2.2 Mapping scheme based on a template

We distinguish two classes of elements: simple
elements and complex elements. A simple element is
an EMPTY element or an element only contains text,

whereas a complex element contains child elements.

. . ” ”

For example, in faculty.dtd, “firstname”, “lastname
« » . « »

and “phone” are simple elements, and “name’,
“address”, “student” and “major” are complex

elements. We can store simple elements that have
one-to-one or deterministic-many-to-one correspond-
ences with their father elements in their father element
tables. This eliminates a part of redundant connections
of individual element tables. Meanwhile, some simple
elements such as “phone” have non-deterministic-
many-to-one correspondences with their father ele-
ments. We call these elements non-deterministic
simple elements. They can’t be stored directly into the
tables of their father elements because we don’t know
how many columns we need to store them. Besides, the

complex elements must be dealt with.

2.2.1 Mapping method of non-deterministic sim-

ple elements

We intend to store non-deterministic simple
elements into the tables of their father elements to
improve the access performance. The key problem is
how many more columns should be created in the father
tables for these child elements. On one hand, if the
number of the columns is set too big, a wide, sparse
table is generated, resulting in low storage usage. On

the other hand, if the number is too small, many data

may overflow, resulting in the decreased access
performance. We expect to get a most highly supported
template according to which the number of the columns
can be decided. A schema extraction method based on
WL’s data mining algorithm® is designed for this
purpose.

We get all element nodes from document object
model (DOM) tree and encode the elements, e.g.,
name[ 1], phone[ 1], phone[2]. The encoded ele-
ments are regarded as different elements during data
mining. We obtain every path from root node to leaf
node from DOM tree, e.g.,

faculty[ 1] .teacher[1].name[ 1] . firstname[ 1]

faculty[ 1] .teacher[3]. phone[ﬂ

faculty[ 1] . teacher[4] . address[ 2] . dwelling[ 1]
and so on. Given a minimum support (Supp), the
algorithm discard the paths whose matching numbers
are below Supp, and then merge the remaining paths to
a template. The template produced for faculty.xml is
as follows:

faculty( teacher( name| 1 ] (firstname[ 1], lastname[1]),

address[ 1] (city[ 1], street[ 1], apartment[ 1], roomnumber[1]),

phone[ 1], phone[2] s

student[ 1] (studentname[1]),

major[ 1](field[1])))

According to the template, five more columns are
required in the teacher table to store the element
“phone”: two columns (one column for text content
and another for attribute “areacode”) for each of the
phonel and phone2, and one column for overflow

indicating flag (see 3.1).
2.2.2 Mapping method of complex elements

A convenient mapping method of complex
elements is to create an individual table for every
complex element. The elements in the table keep
relationships with their father elements through
columns of “ParentID” and “ElementID” .

With a further observation, we find that for the
element “major” , there are a one-to-non-deterministic-
many correspondence between teacher and major and a
one-to-one correspondence between major and field.
Therefore the correspondence between teacher and field
is also one-to-non-deterministic-many. According to
the template for faculty.xml, most teachers have one
and only one field, in other words, one field is most
highly supported by the teachers. So we can directly
add a column of “field” in the teacher table (see
Tab.8). As another example, there is a one-to-one

correspondence between teacher and name, and name



50 Li Wenwu, Jin Yuanping, and Tong Mina

and (firstname, lastname) as well. So we can add
column “firstname” and column “lastname” in the

teacher table.
Tab.8 Teacher table (inverse)

ElementID 5 10
teacherid 1003 1004
sex male male
firstname Leon Tom
lastname Smith White
phonel 4567891 1023456
phonel _ areacode 025 025
phone2 5678912 1203456
phone2 _ areacode 025 025
phone _ overflow True False
student _ studentid 2003 2005
student _ sex male male
studentname Mike Wilfred
student _ overflow True False
Local Area
field Paltférn . Network
Recognization Techonology
major _ overflow True False

We distinguish two classes of complex elements.
A unary complex element such as “student” or “major”
contains only one child element. A multiple complex
element such as “name” or “address” contains two or
more child elements. Unary complex elements can be
stored in their father element tables, whereas multiple
complex elements are usually stored in their own
separate tables. If the correspondence between a
multiple complex element and its father element is
deterministic-many-to-one, the multiple complex elem-
ent can also be stored in its father element table,
e.g., the correspondence between (firstname,
lastname) and teacher is two-to-one, so (firstname,

lastname) can be stored in the teacher table.

3 Data Transformation

3.1 Creating relational table

We use the mode abstraction method in 2.2.1 to
get the template of XML document before creating

relational table.
3.1.1 Common relational table

First we choose and tune two parameters A and C:
Each table usually can have at most A columns; C is
the collection size threshold indicating whether the
collection elements need to be stored in nested or
separate relational tables. Collection elements are the

elements that occur at least twice in the template. This

occurrence number multiplied the number of its child
elements and attributes is the collection size, e.g.,
“phone” is a collection element with its collection size
being 4. For non-deterministic simple elements, if we
store them in their father element tables, we should
increase the number of collection size of columns so as
to balance the reduction of overflow data and the
decrease of nulls. The larger the collection size of a
collection element is, the bigger the occurrence
probability of nulls is. When the collection size is
bigger than or equals to C, we store the collection
element in a separate relational table.

According to the correspondence between child
elements and father elements in DTD (or XML
schema), we divide child elements into three classes:
Class I, the correspondence is one-to-one; Class 11,
the correspondence is deterministic-many-to-one,
e.g., “name”; Class III, the correspondence is
non-deterministic-many-to-one, e.g., “address”, “ph-
one”, “student” and “major”. Then we calculate the
numbers of columns to be taken up by every element
and sort them in ascending order in each class. Note if
the maximum element occurrence time in DTD is bigger
than the occurrence time in the template for
we append a column for the flag
overflow of the e.g.,

“dwelling”, which is the child element of “address”,

faculty.xml,
indicating the element,
its maximum occurrence time in DTD is 1, whereas the
occurrence time in the template is 0, so element
“address” should append a column of “dwelling _
overflow” . We can figure out the columns of the child
elements of the element “teacher” are: Class IT, name:
2; Class III, major: 2, student: 4, phone: 5,
address: 8.

The processing algorithm to these three classes of
elements is as follows:

1) Create separate tables for the multiple complex
elements in Class Il in order to prevent the loss of
relations between their child elements when the
complex elements overflow. Then remove these
elements from Class III.

2) Create separate tables for the collection
elements whose collection sizes are bigger than or equal
to threshold C in Class III so as to decrease the nulls in
the father element tables. Then remove these elements
from Class III.

3) Increase the number of columns in the father
element tables to accommodate all occurrences for the
elements in Class 1.

4) Calculate the sum of the number of columns of



Lossless Mapping from Semi-Structured Data to Structured Data 51

attributes of the father element and that of all elements
in Class I as Total _ fields. If Total _ fields is bigger
than or equals to A, create separate tables for all the
elements in Class II and Class III and jump to 6) .

5) If Total _fields is smaller than A, increase the
number of columns in the father element tables taking
turns of sorted elements of Class II and Class III as long
as the sum of Total fields and that number of columns
is still not bigger than Aj; the Total _ fields is updated

with the sum simultaneously. Create separate tables for
the remaining elements in Class II and Class I1I.

6) Use steps 1) —5) for each of the elements to be
stored in separate tables.

In the example of faculty.xml, A is set to 30, and
elements of “name”, “phone”, “student” and “major”

teacher Table (Tab.8),
“address” is stored in a separate table (Tab.9).

are stored in whereas

Tab.9 Address table

ParentID  ElementID Zip addresssort city street apartment room number dwelling _ overflow
5 6 210000 home Nanjing Suzhou Road 3# 301 False
10 11 210000 lab Nanjing Yunnan Road 4# 404 False
10 12

210000 home Nanjing

Taiping Road null null True

We append a column of “ElementID” in every
common relational table. For the elements whose child
elements are stored in separate tables, “ElementID” is
used to associate their records with the corresponding
records in child element table; for the elements having
columns of overflow indicating flag, “ElementID” is
used to associate their records with the corresponding
records in the overflow _element table (see 3.1.2 and
Tab.10). In every child element table we also append
a column of “ParentID” as a foreign key, which
corresponds to the “ElementID” in its father element
table. “ParentID” is used to associate the records in
the table with the corresponding records in the father

element table.
Tab.10 Overflow _element table

ParentID  ElementID elementname elementvalue

5 7 phone 6789123

5 8 student null

8 null studentname David

5 9 major null

9 null field Artificial Intelligence
12 null dwelling 14

When adding attribute columns in the common
relational table, we set the rules and constraints of

value table

those columns referring to the attribute
(Tab.3). For instance, the column “addresssort” in
address table (Tab.9) is bound to the rule
“@addresssort in ( ‘home’, ‘office’, ‘lab’)” and is
evaluated the default value (“home”) . In addition, the
default values of all the overflow indicating flags are

“False”, or non-overflow.
3.1.2 Overflow relational table

There are often a few data that can’t be stored in

the common relational tables. We use the overflow _
element table and the overflow attribute table to store
these data.

® Overflow _ element table (Tab.10): has four
columns of “ParentID”, “ElementID”, “elementname”
and “elementvalue” .

“ParentID” in overflow _ element table associates
with “ElementID” in common relational tables. We set
the values of “ElementID” unique in all common tables
to ensure every record can exactly match its overflow
elements. We design a set of data structure in 3.2 to
implement this.

The overflow _ element table and all the common
relational tables have the column “ElementID” and the
unique property of its values provide scalability of the
system (See 4). The

“ElementID” in overflow _ element table is similar to

function of the column
that in common relational table. But different from the
latter “ElementID” created as primary key, the former
“ElementID” isn’t required if the overflow element has
no attributes and child elements. So the column
“ElementID” in the overflow _ element table allows
“null” value.

The column “elementname” in the overflow _
element table is created as a foreign key of the element
table (Tab.1).

The column “elementvalue” need to store all kinds
of type of element values, so we set its data type
“ntext” and allows “null” value.

® Overflow _ attribute table (Tab.11): have three
“ElementID”,

“attributevalue”.  The data type of

columns of “attributename”, and
column
“elementvalue” is set to “ntext” and it allows “null”

value.



52 Li Wenwu, Jin Yuanping, and Tong Mina

Tab.11 Overflow _ attribute table
ElementID attributename attributevalue
7 areacode 025
8 studentid 2004
8 sex female

3.2 Loading the relational tables

We can expediently load the relational tables with
XML data after the tables have been created. Store
texts and attributes of elements in the relational tables
through depth-first-traverse DOM tree. If we can’t find
the corresponding field for one element, there are two
possibilities: (D A separate table has been created for
the element; @ The element is overflow. We can
distinguish these two cases from overflow indicating
flag. If there is no corresponding overflow indicating
flag for the element, it’s the former case. We find the
corresponding relational table according to the element
name and then fill in the table with its attributes and
child elements. Otherwise it’s the latter case. We
directly fill in the overflow _ element and overflow _
attribute tables with the element, its child elements
and their attributes. In both of two cases, we fill the
field “ParentID” of the child record with the value of
“ElementID” of the father record.

We design the following data structure to make the
values of “ElementID” unique. We use a variable
CurrentID and a linked list RecyclelD _ list to control
the value of “ElementID”. We set 0 as the initial value
of CurrentID and null as the initial value of RecyclelD _
list. When inserting a new record with a field
“ElementID”, we check if RecycleID _ list is null. If
it’s null, then we increase CurrentID by 1 and evaluate
the field “ElementID” with CurrentID. Otherwise we
evaluate the field “ElementID” with the value of the
first node of RecyclelD _ list and then remove the first
When
“ElementID”, we append a new node with the value of
the “ElementID” into RecycleID _ list.

The faculty.xml is transformed to four relational
tables (Tab.8 — Tab.11) after the processing above.

node. deleting a record with a field

4 Related Work and Discussion

Object oriented databases® can store XML
documents without explicitly storing their schema, but

a DTD is required to get the object-oriented schema. If
DTD (or XML Schema) is known, it’s an effective

storage scheme for semi-structured data. But DTD (or
XML Schema) is unknown in some applications. Our
mapping scheme uses a schema extraction method
based on WL’s data mining algorithm and stores data
in RDBMS instead of ODBMS. It is independent of
DTD (or XML Schema) .

We didn’t deal with the mapping of comments,
processing instructions, CDATA sections, prolog and
standalone document declarations. We plan to use
another special relational table to store these data.

The mapping scheme is well scalable. It can also
support XML namespace by using the following two
tables:

speaking, most namespaces are attached to the complex

ElementID-namespace table: generally
elements that have unique “ElementID” values in the
relational tables. Only three columns are required to
record the information of this kind of namespaces:
“ElementID”, “Namespace name” and “Namespace _
value”; (@ General namespace table: store the
namespaces of attributes and comparatively simple
elements. The table has four columns: “ParentID”,
“name” (name of element or attribute), “Namespace _
name” and “Namespace _ value” .

The lossless mapping from semi-structured data to
structured data is a challenging task, because they are
obviously incompatible. Our hypothesis is that many
semi-structured data sources have a mass regular
structure with few outliers so that we can extract the
schema to store data. After the semi-structured data
have been transformed to structured data in RDB, they
can be efficiently managed by traditional DBMS
technology.

References

[1] Deutsch A, Fernandez M, Suciu D. Storing Semistructured
Data with STORED[ A]. ACM SIGMOD International Confer-
ence on Management of Data [(c]. Philadelphia, 1999,28(2) :
431 -442.

[2] Wang K, Liu H. Discovering Typical Structures of Documents:
a road map approach[ A]. ACM SIGIR Conference on Research
and Development in Information Retrieval [C]. New York,
1998.146 - 154.

[3] Christophides V, Abiteboul S, Cluet S, et al. From Structured
Document to Novel Query Facilities [A].
Winslett M, eds. Predeedings of 1994 ACM SIGMOD Interna-
tional Conference On Management of Data[ C].
1994.313 - 324.

In: Snodgrass R,

Minneapolis,



Lossless Mapping from Semi-Structured Data to Structured Data 53

FEM R R S EIR A T iR R &

(R KFHEMNAFE LRZ, T 21009)

W E RSBFEMURBERLA —ZERIE, FECMNBAELTXAEEGHOEH
AT, 7T A 23t 5 Al DBMS HORSBAT AL 22 3R 4 AR T 4540 09 B AE 4 2R AL 22, AARGEHA R I
0 RAR A A TR DTD 6945 5 , A —FF R B 2 g we g o AN F 2 h st 7 £, A A — A
AT HIBIZBAGEX I &, AR R R T E 5 AR,/ T — A 2069 % B 238 4 22 7
, FILT M AL BIE B 45 ML H R 0 R B e g

KR FLEMEIE,DTD, X & 238 & 2 X g4, DOM, & & 2 3%

mESES TP31I



