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Abstract:

This paper describes two modified methods for triangular and quadrilateral meshing for finite element analysis of

2D electric machines. One is coupling the classic Delaunay method and advancing front method to generate optimal

triangulation; the other is coupling the classic paving and Delaunay triangulation for optimal quadrilateral meshing. Various

electric machine models are meshed successfully to demonstrate the robustness and effectiveness of the methods.
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Automatic mesh generation for finite element
analysis of electromagnetic field has been widely
researched, and has been developing to maturity in
many areas. The most popular mesh generation methods
are Delaunay-based methods and advancing front
technique (AFT) . These two methods have been widely
used to generate high-quality meshes for arbitrary
domains. But for electric machines, both 2D and 3D
mesh generation still needs further research due to
electric machines’ complex geometries and the
necessity of large size-ratio mesh in air gap and its
neighboring areas. In this paper, two modifications to
the classic Delaunay triangulation and advancing front
quadrilateral meshing (or paving) are proposed to deal
with the 2D cases respectively.

In the procedure of the Delaunay triangulation,
one important step is to generate inner field points.
Various inner points generation methods have been
used, such as placing nodes on the gravity centers of
triangles, or along edges, or generating nodes in the

]

octree method' ™" . But these methods cannot generate

which  will
influence the mesh quality greatly. In this paper, the

inner points with optimal positions,

classic Delaunay method is coupled with the advancing
front technique. It generates the inner points in AFT
and inserts them in Delaunay method front by front.
This couplement combines AFT’s forte of generating
inner points with optimal positions and Delaunay
method’s rapidity of points insertion to generate
optimal triangulation efficiently. Even for meshing with
very large size-transition (500 : 1), this modified trian-

gulation performs very well.
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Several automatic quadrilateral meshing schemes
have been developed and their applications have
increased rapidly because of their superiority in FE

$-17] These schemes

analysis to the triangular elements
direct and

methods

can be classified into two categories:

indirect quadrilateral meshing. Indirect

usually use a generated triangulation to generate

other
[8-11,15]

quadrilateral elements by conversion or

[12-14,16]
’

techniques while direct methods not

Paving is in the direct category and has three
characteristics desirable for FE analysis: (D boundary
sensitive; (@ orientation insensitive; @) few irregular

S50 However, even though it has been modified

12,13,15,16

nodes
by several authors' " the paving method still has
two shortcomings: it needs expensive computation for
frontal edges’ intersection checking; it cannot generate
elements in a global light with respect to sizing hence it
cannot treat cases needing very large size-transitions.
In this paper, we first use Delaunay method to obtain
the boundary triangulation, which helps to construct
the sizing space and neighboring grid. Then we use the
space and neighboring grid to
globally  with
consideration and locally with respect to frontal edges’
checking.  This
possible high-quality quadrilateral meshing for FE

sizing generate

quadrilaterals respect to metric

intersection modification makes
analysis of electric machines.

This paper is organized as follows. Section 1
discusses the Delaunay triangulation coupled with
AFT; section 2 describes the modified paving method
coupled with the Delaunay triangulation; section 3

presents two meshing examples for an electric machine,
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triangular and quadri-lateral respectively. Finally, we

make our concluding remarks.
1 Delaunay Triangulation Coupled with AFT

Usually, the procedure of a Delaunay-based
triangulation includes the following three successive
steps: (D boundary triangulation; @ interior refine-
ment; @) mesh improvement. @ and @ was discussed

in detail by several authors 271819

Here, we just
recall the outlines of the procedures. Our focus is on

the interior refinement.
1.1 Boundary triangulation

The outline of the

triangulation goes as follows:

procedure of boundary

1) Create the set of the initial points which
include the boundary and the specified points;

2) Create the four points defining a rectangle
enclosing the above set;

3) Triangulate the rectangle by two triangles;

4) Insert the initial points and get an initial mesh
including these points;

5) Regenerate the boundary edges and define the
different domains;

6) Remove the exterior triangles to obtain the
boundary triangulation.

After the

interpolation method to derive a control space or sizing

boundary triangulation, we use
space from it. Then for a point p in the domain, we
have h(p) as the element size or the sizing value for
it. With this sizing distribution, we introduce the
notion of edge normal length. Let A and B be the two
end points of edge AB, then the normal length of AB is
L(AB) =2 - dis(AB)/(h(A) + h(B)) where dis(AB)
is the length of AB. And we say a triangle is
acceptable if all its three edges’ normal edge length is

less than a given criterion (we set it to be «/5),

otherwise unacceptable.
1.2 Interior refinement

Once the

obtained, we come to the next task: interior refinement

boundary triangulation has been
which includes generating inner field points and
inserting them into the existing mesh. For this, our
method is using AFT to generate inner points with
optimal placement and insert them in efficient
Delaunay method. The procedure of the algorithm is
presented as follows:

1) Initialize the front F, (i = 0) to be the

boundary edges of the boundary mesh, and mark all

triangles to be unacceptable. Let A; equal to all the
acceptable elements, U; equal to all the unacceptable
elements. Obviously A, = T,(T; is the triangle of the
ith stage) .

2) Find an optimal point for each element e of
F;. Once the front F; is identified, an optimal point is
determined for each element of F;. This point lies on
the same side of the edge e’ as the unacceptable
element leaning on it, and is placed at a position which
is determined to form an optimal triangle with e’ .
Using the control space and the notion of normalize
length, we carry out an iterative procedure to construct
the optimal point. These points form the points cloud
N; + 1.

3) Filtering of the N; + 1. As every point of the

N; + 1 points cloud is independently created, a
filtration must be performed to remove from N; + 1 a
point which violates the size criterion (via the control
space) when compared with a previous selected point

from N, + 1.

i

4) If the filtered point cloud N; + 1 is empty, go
to end.

5) Insertion of the retained points into T, via the
constrained Delaunay insertion procedure which is a
restriction of the standard Delaunay insertion method to
avoid the deletion of an existing constrained entity like

constrained points, edges[zt,zo,zz] '

6) Update the front F; and go to 2). Once the T,
is constructed, we classify the elements of T, into A,
and U;. Then: F.: = (f:f = (k,, k,),where k, is in
A; and k,isin U;), where (k,, k,) indicates a pair of
neighboring elements, i.e. f is an edge between two

elements, one is acceptable, the other is unaccep-

table.
1.3 Mesh improvement

The outline of the mesh improvement is as
follows:

1) Improve the mesh connection structure by mesh
relaxation process;

2) Apply

smoothing to smooth the obtained mesh to recover the

optimal  smoothing or Lapacian
mesh quality;

3) Use edges swapping to topologically optimize
the quality of a few badly shaped triangles.

Now, we have completed the process of our

Delaunay triangulation coupled with AFT.

2 Modified Paving Method

Since the introduction by Ted D. Blacker[gj,
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paving method has been developed by many

[12,13,15,16)
researchers .

Among these modified paving
schemes, the typical procedure of the most developed
and mature ones comes as follows:

1) Input the boundary node loops;

2) Find the best starting loop;

3) Find the best starting edge of the loop;

4) Create an element for the selected edge;

5) Check the intersection, if the intersection
occurs, solve it and goto 2); else, continue;

6) Insert the element into the data structure;

7) Perform local smoothing for improved quality;

8) Update the loop; if the loops are not empty
goto 2);

9) Globally optimize the mesh.

Two key steps of the above procedure are 4) and
5). Blacker’s paving method create an element locally
and perform intersection test globally, which results in
creating meshes without smooth element-size transition
computation for intersection

and needing costly

checking™ . Owen and S. H. Lo have done good jobs

12580 They make use of a prior

for this problem
triangulation of the domain to govern the sizing
distribution and perform the element creating globally,
globally. But this

treatment requires a very complicated data structure

the intersection test indirect
which makes the implementation difficult to manage.
Also it needs additional mesh generation time for the
triangulation. Furthermore, the conversion speed is
comparatively slow.

For solving these problems, we have the following
strategies:

1) Using a boundary triangulation to derive a
control space or sizing space to govern the element
sizing globally;

2) Using a neighbor grid and the above control
space to govern the intersection test and perform the
checking locally, thus inexpensively.

In the following, we describe the above two

strategies.
2.1 Modification to element creation

Firstly, we make a Delaunay triangulation of the
boundary and specified points. And as in section 1,
using this triangulation we derive a control space (or
sizing space) from it and also introduce the notion of
normal edge length. Then for a point p in the domain,
we have h(p) as the element size for it; for an edge
AB we have L(AB) as its normal edge length. Also,

in the triangulation, we introduce a neighboring grid G

which is constituted by a set of uniform rectangles (we
call these rectangles the cells of G) whose sides are
parallel to the co-ordinates axis and which covers the
whole domain.

Secondly, with the above preparation, we come to
element edges’ generation. In our starting edge’s
selection, we use the method introduced by Owen ™’ .
First we define a state dual for each edge of the starting
loop. The possible states include (1,1), (1,0), (0,
1), (0,0). Then we start from the edges with states
(1,1), next (1,0), (0,1), (0,0) in order. Let e, (as
shown in Fig.1) be the starting edge and p, p, are its
end points. p; is the left point of p on the loop.
Without loss of generality, we consider the (0,0)
case, i.e. we need to create three edges e, (the left
one), e, (the right one), e (the above one). To this
end, we first create p * as follows:

1) Find p~ satisfing: the line p” p bisects the
inner angle ang 1 and dis(p”p) = (dis(p,p) +
dis(pp,))/2.0.

2) Compute the normal length L(p™p). If
L(p~ p) is above 1.0,move p" in the direction from
p to p until L(p” p) is near 1.0;else, move p~ in
the direction from p to p . Then, in the same

manner, we create p  for p,. Finally, we
simultaneously move p~ and p™ in proper direction
(beginning from the midpoint p,, of the edge p“ p™" )
along the line p p" until L(p p™ ) is in the
range[l —a,l + a]. Here, we let a equal to 0.25.
Thus, we form an element for e; with the above

created three edges.

p

Fig.1 FElement edges’ generation
2.2 Modification to intersection check

Because the neighboring grid G covers the entire
domain, we can associate with each cell of G the
boundary points and newly generated field points. For
a point p, we find the cell which p is in and associate
the cell with it. Thus, using G we have the following
intersection check.

For a newly created edge e.g. e (see Fig.1), we
first find the smallest cells set g~ which covers the

edge e,; then we use the control space to derive the
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maximum element size h, and with h,, we define
another cells set g~ which includes g* and has a
radius larger than that of g~ by h,,. That is to say, if a
point p lies outside g, it has no edges (connecting
p) intersecting the edge e,. From g™, we find the set
A constituted by the points which are in g™ . Finally,
for each point g of A, we perform the intersection test
of the edges (connecting g) with the edge e;, and store
the intersection edges for later intersection treatments if
the intersection occurs. If no point of A has edges
which intersect e;, we say e, has no intersection with
the current loop. In this manner, we can perform the
intersection checking locally, not globally, thus more
efficiently than before.

With the above two modifications, we can

generate  quadrilaterals  with  elements  globally
generated and intersection check locally performed.
Hence, in this modified paving method, we can
generate high-quality quadrilateral meshes with large

element size ratios robustly and efficiently.
3 Application Examples

In this section, we present two meshing examples
for electric machines. One is a triangular mesh
generated in the above discussed method of Delaunay
triangulation coupled with AFT. Fig.2 shows a quarter
of the mesh. The other is a quadrilateral mesh
generated in the modified paving method. Fig.3 shows
a part of the mesh. These two examples obviously
demonstrate the robustness and effectiveness of our two

modified mesh generation methods.

Fig.2 A quarter of a triangular mesh of an electric machine

4 Concluding Remarks

This paper proposes two modified 2D mesh gene-

ration methods for FE analysis of electric machines.

X

"
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Fig.3 A part of a quadrilateral mesh of an electric machine

The first one couples the Delaunay efficient points
insertion with AFT’s optimal points placement for
high-quality triangulation of arbitrary 2D domains. The
second one modifies the classic paving method using
two auxiliary tools: the control space and neighboring
grid. The modified paving can generate elements
globally and perform intersection checks locally, due to
which we can generate quadrilateral meshes robustly
and efficiently. Complex application examples have
been shown to illustrate the capability and robustness

of the modified meshing schemes.
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