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Abstract:

This paper deals with the blow-up rate of positive solution for a semilinear parabolic system coupled in the

equations and a boundary condition. The upper and lower bounds of blow-up rates are obtained.
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1 Main Results

In this

paper, we study the blow-up rate estimate of positive

Let p,g and m be positive constants.

solution to the following semilinear parabolic system in
half plane with nonlinear boundary condition:
x>0,t>0
—u, =", —v, =0 x =0,t >0
u(x,0) = uy(x ), v(x,0) = v,(x) x=0

u, = u, + 0, v, = v, + u

(1)

where the initial data u,(x) and v,(x) are bounded

nonnegative and nontrivial C' functions and satisfy

b @

m

, — vy, =0 forx =0

limvy(x) = 0

- Upx = {Uo%

122 uo(x) =0,
Using the comparison principle and the results of Refs.
[1,2], we know that if

max{pg — 1,mg — 1} > 0 (3)
then the solution (u,v) of (1) blows up in finite time
Throughout this

paper we assume that (3) holds and the solution (u,

for the suitable “large” initial data.

v) of (1) blows up in finite time T. It is obvious that
u and v blow up simultaneously. By (3) it follows that

b @

There are many results on the blow-up rates for

p=C2mg+2m-1)/2+ q)=pg > 1
< (2mg +2m - 1)/(2 + q)=>mqg > 1

semilinear parabolic systems with nonlinear boundary
conditions (see Refs. [3 — 6] and the references
therein) . The main goal of this note is to study the
blow-up rate estimate of solution to (1), and find out
the whole effects of the reaction terms ", u’ and the
nonlinear boundary condition u” on the blow-up rate.
Explicitly, our main results of the present paper read
as follows.
Theorem 1

v, ) satisfies (2).

Assume that the initial data (u,,

Received 2001 — 11 - 15.
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(i) There exists positive constant ¢, such that if

p = 2mg+2m -1)/(2 + ¢) then
t)*([wrl)/(pq—l)
o

t)f(qul)/(pq—l)

max Pu(% T) C(T_

O<t<t 2=
max sugv(x T) (T -
(2mg +2m - 1)/(2 + q) then
t)—(1+2m)/[2(w1—1)]
o

Y= 2ra)/(20mg-1)

Whlle, 1fp
max gu(x ) = (T -

O<st<t x>

max %)v(x )= c(T -1t

O<t<! x>

(ii) When p = (2mg + 2m - 1)/(2 + q), we
assume max{(p + 1)/(pg = 1),(qg + 1)/(pg = )| =
1/2; when p < (2mg + 2m - 1)/(2 + q), we assume
that the initial data (u,, v,) satisfies u {(x) < O,
vo(x) < 0, and the parameters m and ¢ satisfy
max{(2 + ¢)/(mg - 1), (1 +2m)/(mg -1))} > 1
ormax{(2+ ¢)/(mg -1),(1+2m)/(mg -1)} =
and g, m = 1.

Then there exists positive constant C, such that if
p < 2mg +2m - 1)/(2 + q) then

max gu(x T) C(T— t)—(1+2m>/L2(mq_1)J

Ost<st x>

@+ /2mg-1)] }(7)
max Pv(x ) < C(T — ) ' #o/me-

O<t<t x=0
while, if p = (2mg + 2m — 1)/(2 + ¢) then
t)—(l+p)/(pq—1)
o

t)—<l+q)/(pr[—1)

max su}oz)u(x ) < C(T -

O<st<st x>

max }é)v(x T) C(T_

O<st<t x>

Remark If p = (qu +2m - 1)/(2 + q), then
(1 +2m)/[2(mg-1)] = (1 + p)/(pg -1) and (2 +
@) /[2(mg - )] = (1 + ¢q)/(pg - 1).

2 Proof of Theorem 1

By the assumption of theorem 1, it follows from

the classical results that the solution (u, v) of (1)

0, v(x,t) =0and limu(x,t) =

> ®

= 0. Therefore, u(x,¢) and v(x,¢)

satisfies u(x,t) =

0, limv(x,¢)

Eanald

obtain their maximums in the interior of [0, + ).

* The project supported by the “333” project of Jiangsu Province and the National Natural Science Foundation of China (19831060) .

#% Born in 1977, female, graduate.



100 Li Huiling, and Wang Mingxin

Denotef(t) max suPu(x 7), g(t)

O<t<t =0

max su]gv (x,

O<t<t 2=

t), then f(t) and g(t) are the non-decreasing
We first use the ideas of Ref. [7] to

prove the following lemma.

functions in ¢.

Lemma 1 Let a and 8 be positive constants and
satisfy
2+a-p8=0,2+B-¢qa =0 (9)

Then there exists a positive constant € such that, V ¢
c[12,7),

e (1) < (1), ef" (1) < &" (1) (10)

Proof On the contrary we assume that the first
inequality of (10) is not true, then there exists a
{e,} with ¢, — T such that
g " (t,)f"*(1,) >0 as n— o . For each t,, choose
(x,, ,) € R* x (0,1,] such that v(x,, £,) =
g(t,). Since g(t,) = o, it follows that Lf,l - T .
Let

A, = g (1)

0. (yys) = Zu(dy + 2,47 + ) (1)

g, (yrs) = Mo(Ay + 2,5 A5 + 1)

(y,s) € J, x [,(T)
where J, = [ - /1;1;6", + ®),

sequence

L(1) = (-7,
A7 (- tA" )). By the direct computations, we see that
@, and ¢, satisfy

(@), = 1(g)l, + 2,777,

(¢.), = 1(g)1}, + 2,70

— et (= A%, ,s) = Al (= A, s)
g (= A'%,,8) = 0

(12)
where y € J,,s € I.(T) and
%(0 0) =1,0< ¢, (v, 5) <
< 6. (r.s) < 2f(1,) = g-“’f*un)f(z,l)} (13)

where y € J,,s € (- A, ,I,O].

Using Egs. (9) and (13) and A,
that the nonlinear terms in (12) are all uniformly
bounded. For any K > 0, in view of (12) and the
Schauder’ s estimate, we obtain

H<g0n’

where the constant Cy is independent of n.

— 0, we know

7+/ 14 p2

0ty <klixi-kon < Cx

It follows
that there exist subsequences of {(¢,, ¢, )| and
{ x, |, which denoted also by {(90” s g[;,,,)% and {fc,,%
respectively, nonnegative functions ¢ and ¢, and a
= — % such that — A;lfc,, —aand (@,, ¢,) > (@,
¢) locally uniformly on (y, s) € (a, + ®) x (- o,
0]. Moreover, for y € (a, + ®), s € (- »,0],
(¢, ¢) satisfies

=Pyt s b=y ¢

00,0 =1,0<s ¢ <1l,0=0
It is a contradiction.

By the similar way, we can prove the second
inequality of (10).

If f(t) = OI<nrai(lu<O,‘L'), g(t) =

we can prove the following similarly.

maxv(0,7),

<7<t

Lemma 2 Let « and 3 be positive constants and
satisfy

2+a-p=0,2+B-ga=1+a-mB=0

(14)

Then there exists a positive constant € such that (10)

holds.

Recall that the Green’s function G(x,y,t) for
the heat equation in R" satisfying % =0aty =0is
given by

Glx,y,t) = <4m>-”2(exp(_<"—4‘tﬁ)+

(x + y)
ewl - 257
ForanyO< z < t < T, we have Green’s identity (See
Ref.[4]),

u(x,t) = ]:G(x,y,z)u(y,z)dy+
j O+°°(;<x,y,t — ) () dydy +
J;G(x,o,t ~ )" (0, ) dydy
v(x,t) = j TGy, )o(y, ) dy +

J JO G(x,y,t — pu'(y,p)dydy

For simlplicity we define positive constants @ and 8 as

follows:

_2p+ 1) _2g+ 1) . 2mg +2m -1

_pq—l’ﬁ_pq—l itp= 2+¢q

_2m +1 2+g . 2mg +2m -1

a_mq—l’ B = ifp < 2+4q
(16)

2.1 Proof of the lower bounds

To prove the lower bounds, we first prove a
lemma.

Lemma 3 Let the positive constants a and 3 be
given by (16). Then for T/2 < t < T, we have

(A) If p =2m - a/f3, then

f( ) C(T— ) 1(pBla=1)

g(z) > C( T _ Z)—l/(p—a/ﬁ) (17)
(B) If p < 2m - a/pB, then

f(z) C( T _ z)—l/[Z(mﬁ/zx—l)]

g(z) > C( T _ z)-l/[z(m—a/ﬂ)] (18)
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Proof By the expressions of @ and 8 we see that
ifp = (qu +2m - 1)/(2 + q), then (9) holds, and
if p< 2mg +2m - 1)/(2 + q), then (14) holds.
Hence we have (10). In view of (15) and the first
inequality of (10), we have

f() < f(z2) +jrg”(t)d77 +

g”l(t>J Tl_—l/2(l _ 77)—I/Zd77 <

f(z2) + (T - 2)g" (1) +
C(T-2)"g"(1) <
f(z) + C(T = 2) 7 (t) +
CT = 2)" % (4) (19)
By our assumption, f(t) —>+ % as t— T~ . For any z
€ (T/2,T), one can choose t:z < t < T such that
f(t) = 2f(z). Without loss of generality we assume
that f(¢),g(t) > 1for T2 < z < T.
(A Ifp =2m-alB, i.e.pfla =2mpla -1,
then by (19) we have
f(z) < C(T - 2)f™(2) +
C( T _ z)llzfn’ﬁ/(Zn)(z)fl/Z(z) <
C(T = z2) " (z) + ef(z) +
Ce)(T - 2)"(2) <
C(T - z) " (2) TR < z< T
This implies the first inequality of (17). By (10), we
obtain the second inequality of (17).
(B) f p<2m —alP, i.e. pPla <2mPla -1,
then by (19) we have
f(z) < C(T = z) " 4
C( T _ z)l/z f<2m,9/a-1)/2<z)f4/2(z> <
C(T - z)fz'"’%_1 +ef(z) +
C(e)(T - )" (2) <
C(T - z) 7' (2) T2 < z< T
Similar to the case (A) we see that (18) holds. The
proof is completed.
In the following we give the proof of the lower
bounds.
DIfp= 2mg+2m—-1)/(2+ q), then pg >
1 by (4). Using (16) and the direct calculation we
have2+a - p8=2+8-ga=0,1+a-mB=0,
pBla +1 —2mBla = 0. This shows that the conditions
of lemma 1 hold and p = 2m — a/B. Therefore, (17)
holds. The direct computations give pp/a — 1 = (pq -
DIitp+1), p-alf = (pq - 1)/(qg +1). Hence (5)
holds.
D) Ifp < (2mg+2m -1)/(2 + q), then mq >
1 by (4). In view of (16) and by the direct calculation
weseethat 2+ B -qga =1+a-mB =0,2+a-pp
=0, pBla + 1 - 2mPB/a < 0. This shows that the

=

conditions of lemma 2 hold and p < 2m - a/f.

=

Therefore, (18) holds, and consequently (6) holds.
2.2 Proof of the upper bounds

Since g(t) is continuous, nondecreasing and
lim g(t) = «. Forany t, € (0, T), we define

=T

10 =t (1,) = maxit € (1,,T) 1 g(1) = 2g(1,)}
Choose A, = A(t,) asin (11), we assert that

1_2(’50)<ta —t0)$ M Vi € (T2,T)

(20)

where M is a positive constant which does not depend
on t,. If (20) were false, then there would exist a
sequence t, = T~ such that A;> (¢} - 1,) — %, where
A, = A(t,) and t! = t*(t,). For each t, choose
(%,, lAn) such that v(x, , tAn) = g(t,).

1) If p=(2mg +2m -1)/(2 + q) then pg > 1.
By direct calculation, we know that the conditions of
lemma 1 hold. We rescale (u, v) around (;c" " tA,l) as
in (11), and then obtain a solution of (12) in J, x
I.(T) such that ¢, (0, 0) = 1. From (10) and the
definition of ¢ we have

0< ¢ < Nglty) =2

0< o < A5 < Ae g™ (1) = 27
where y € J,, s € [, (t}).

Same as the proof of lemma 1, there exist c*!

functions @(y, s) and ¢(y, s), which satisfy

QDS = goi‘? + pr > (lbx = sb}ﬁv + @q
y €R sE€E (- o, + »)
@ (y) =0, ¢(y) =0 y€R

Since max{(p + 1)/(pg = 1),(qg + 1)/(pg - 1)} =
1/2, the results of Ref. [1] imply that (¢, ¢) blows
up in finite time. It is a contradiction. So, (20)
holds.

2)Ifp< (2mg +2m —1)/(2+ ¢q) then mg > 1.
By the assumption on initial data we know that the
solution of (1) satisfies u, < 0,v, < 0. Hence, f(¢)

= max u(0,7), g(t) = max v(0,7). By direct

O<st<t O<r<t

calculation we know that the conditions of lemma 2
hold. We rescale (u,») around (0, tA) as in (11),
and obtain a solution of (12) (in there ;an is replaced
by 0) such that ¢, (0,0) = 1, and
0< ¢ < digley) =22g(s,) =2
0< ¢, < Af(e;) < A% (g(ep) = 2%
where v € R*,s € [, (t!). Same as the proof of
lemma 1, there exist C*' functions go(y, s) and
v,[;(y, s), which satisfy

{903 =@+ 0 b=, + ¢

- ¢,(0,s) = ¢"(0,s), - ¢,(0, s) =0



102 Li Huiling, and Wang Mingxin

where y € R*, s € (= o, + ®), 8, satisfies 0 < &,
< 1. Recalling the assumptions of (ii) of theorem 1,
using the results of Ref. [2] and the comparision
principle, we know that (¢, ¢) blows up in finite
time. It is a contradiction. Hence, (20) holds.

Next we use an idea from Ref. [7] to give the
estimate of the upper bound. From (11) and (20), it
follows that

tg -ty < Mg (1) Y, € (T2, T)

Fix ty € (T/2,T) and denote t, = t5, t, = ¢/,
ty = t;, . Then

g — 4 < Mgfw(tj), g(tm) = 2g(t,-)
j=0,1,2,
Consequently

T_ t() = E(t}'ﬂ - t]) = MZ giz/ﬁ(t}‘) =
j=0 j=0

Mg (1,) > 47"
20
Hence

v(x,ty) < g(ty) < C(T = 15)™™

(M4 = (M>)47)™" | With
j=0 j=0

to € (1/2,T)

where C =

— > P04 B 77 35 4H IR TR AR B I

(RaRFRRA

W E or—4ad

%ﬁﬂﬁ? LG8 0 Mt AL T A2 LR AR 0 1R R AE O 4

this conclusion and (10), we can get (7) and (8).
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