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Abstract:

A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic

Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. Then,

advancing-front high-quality point placement is used to generate internal points with optimal positions and a Delaunay method

is used to insert them efficiently. Finally, optimization procedures are used for mesh quality improvements. Several

application examples are presented to demonstrate the robustness and efficiency of the proposed meshing scheme.
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Since the works of C. Lawson and D. Watson,
Delaunay triangulation has been investigated for many
years. It has been developed to be very mature in 2D
meshing. But for 3D cases, there still have remained
one unresolved bottleneck: boundary integrity or boun-
dary recovery. Many researchers have proposed several
treatments for it: adding extra points (usu. mid-edge
points) i.e. refinement; local edges/shell operation

(like swapping)[l'z]. However, among the above
methods, local operation makes use of heuristics;
refinement treatment leads to surfaces triangulation
incompatibility when merging several singly meshed
bodies. In this paper, we couple the Delaunay method
with a simplified advancing front method for obtaining
the boundary tetrahedronization which observes the

Also,

tetrahedronization, we again couple the advancing front

boundary integrity. based on this initial
points generation with the Delaunay points insertion to
complete the required tetrahedronization robustly and
efficiently.
Before the boundary tetrahedronization, we
perform a Delaunay tetrahedronization of the convex
hull of the boundary points and specified points, from
which a control space(or sizing spacing) and a
semi-boundary tetrahedronization are derived. Then the
classic advancing front method is simplified: the

candidate points for each frontal face are only the
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surface points; the optimal choice of the candidate
point depends solely on the element quality of the
so-formed element; the validity testing is also reduced
to the faces’ intersection checking”™ . When we
encounter the cases that no point allows to create a
valid element for a given frontal face, we advance from
another frontal face. If this still cannot work, we delete
the tetrahedrons connected to the problematic face if it
is an internal face or we create a Steinor point with
optimal position(with respect to the frontal face)by
making use of the control space if it is a boundary face.
In this way, comparing with the whole meshing
process, we can inexpensively obtain the boundary
tetrahedronization.

Once the boundary tetrahedronization is comple-
ted, we, front by front, iteratively use the advancing
front technique to create the inner points with optimal
positions(also making use of the control space) and
then insert them into the existing tetrahedronization
with the optimal Delaunay insertion procedures“’LQJ.
This couplement combines the advantages of efficiency
and nice mathematical properties of a Delaunay method
and AFT front high-quality point placementm . At last,
we use optimized Lapacian smoothing and local
transformation mesh improvements.

In the following sections, section 1 will discuss

the first couplement of the Delaunay method and AFT
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for obtaining the boundary mesh. Section 2 will deal
with the second couplement for interior refine-
ment(i.e.points generation and insertion). Section 3
will present the mesh optimization procedures. Section
4 will summarize the meshing scheme and provide two
meshing examples: a complex geometric model and a
large transformer. The robustness and efficiency of the
generation procedure and the high quality of the

elements (tetrahedrons) illustrate that this coupling is

a nice mesh generation solution.

1 Boundary Tetrahedronization

Our boundary tetrahedronization consists of two
steps: first,we use the Delaunay method to form a
semi-boundary tetrahedronization; then, we apply AFT

to complete the boundary meshing.

1.1 Semi-boundary tetrahedronization

The data necessary for our mesh generator is the
surface triangulation (of the boundary of the domain)
whose elements are oriented with the normals pointing
to the interior of the domain. Let SP be the set of the
nodes of the surface triangulation. For the semi-

(SBT),

perform a standard Delaunay tetrahedronization 7" of

boundary tetra-hedronization firstly, we
SP and this mesh forms a convex hull of SP; secondly,
we divide the tetrahedra ST of 7" into two parts: BST
and IST, among which BST are the tetrahedra (of ST)
each of which has at least one boundary face(in respect
to T" , and we call the face its skin face), and IST the
inner tetrahedra. For each element of BST,if each of
its skin faces coincides with one triangle of the surface
triangulation and this tetrahedron doesn’t intersect any
element of the surface triangulation, we mark this
tetrahedron valid, else invalid. For each element of
IST, only if it passes the above intersection checks, we
mark it valid,else invalid; thirdly,we delete the
invalid elements and retain the valid elements from
T" ;finally, we add the surface triangulation to the
valid elements and obtain the semi-boundary
tetrahedronization.

Obviously, SBT has “empty areas” due to the
deletion of the invalid elements. Usually, the volume of

these “areas” is only a small percentage of that of the

whole domain. Hence,we can use AFT to “fill” these
“empty areas” with a comparatively small number of
complete the

tetrahedra, i.e., inexpensively to

boundary tetrahedronization.

1.2 Complete boundary tetrahedronization

In our simplified AFT,the shape quality criterion
for a tetrahedron is defined as Q(¢) = a(p/h) where
h is the longest edge length of the element ¢;p is the
radius of the inscribed sphere of ¢; a coefficient « is
applied so that the highest criterion(of equilateral
element) is 1.

The process of the simplified AFT goes as follows:

D Initialize the front to be the addition of the
boundary faces(of SBT) each of which connects no
tetrahedron and the inner faces(of SBT) each of which
connects only one tetrahedron;

@ Select an element from the front as a base face;

@ Find the candidate points set A: A consists of
the frontal points which lie in the left side of the base
face,i.e.,the tetrahedron the base face and the
candidate point form has a positive volume. And with
A, we form the candidate tetrahedra set T(A);

@ Sort T(A) in the order of descending element
shape quality Q(2)(¢ of T(A));

® Beginning from the first element of T(A), try
to find the first element e¢” , which doesn’t intersect
any element of the front;

© If e exists, its corresponding point P~ (in A)
is set to be the candidate point we want and go to @3
else, we choose a different element of the front as the
base face and go to @;

@ If all the elements of the front have been tried
and failed, we encounter the Schronder case. For this,
we have the following strategy* .

a. If the current base face is an inner face, delete
the tetrahedra connecting it and update the front go to
@;

b. Else add a Steiner point ) on the vertical to
the centre of gravity of the base face and delete all the
intersection (if it occurs) tetrahedra. Let P* = (Q, go
to @.

@® Form a tetrahedron with P~ and the base face

and add it to the data structure;
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© Update the front. If the front is not empty, go
to Q.

After the boundary tetrahedronization, we derive a
control space (or sizing space) through interpolation
and construct a neighborhood grid. Also we define a
normal edge length for an edge in the method
introduced by George'”" .

2 Interior Refinement

Once we have obtained the boundary mesh, the
successive work is to generate interior points and insert
them into the existing mesh. We use the method
proposed by P.L.George: generate nodes with AFT and
insert them in Delaunay-based methods. Here, we just
recall the outline of the algorithm.

D Initialize the front F, (i = 0) to be the
boundary faces of the boundary mesh, and mark all
tetrahedra to be unacceptable (i.e. the shape quality
measure is below a priorior ecriterion, else,
acceptable). Let A, = (all the acceptable elements),
U, = (all the unacceptable elements). Obviously A,
= T,(T:. is the tetrahedra of the ith stage).

@ Find an optimal point for each element e of
F;. This point lies on the same side of the face e as
the unacceptable element leaning on it, and is placed
at a position which is determined to form an optimal
tetrhedron with e” . Using the control space and the
notion of normalize length,we carry out an iterative
procedure to construct the optimal point.These points
form the points cloud N; + 1.

@ Filtering of the N, + 1. Remove from N; + 1 a
point which violates the size criterion (via the control
space and neighboring grid space) when compared with
a previous selected point form N; + 1.

@ 1If the filtered point cloud N, + 1 is empty, go

to end.

© Insertion of the retained points into T; via the

i

. . . 1.2,8]
constrained Delaunay insertion procedure' .

© Update the front F; and go to @. Once the T,

i

is constructed, we classify the elements of 7, into A,

and U;. Then, F;, = (f:f = (k,,k,),where k, is in
A; and k, is in U,),i.e. f is a face between two

elements, one is acceptable, the other is unacceptable.

3 Mesh Improvement

Good mesh quality is a major key to obtain precise
solution (or to facilitate the solution step of the
computation, in particular, when an iterative method is
used) . In our mesh generation, even though the AFT
optimal field points generation has governed the entire
interior refinement, in 3D,this is not sufficient for
satisfactory mesh quality. Hence, mesh quality
improvement is a necessary stage. Here we briefly
describe two kinds of optimization procedures: vertex

relocating and local mesh modifications.

3.1 Vertex relocating

Laplacian smoothing and optimal smoothing are
usually applied for vertex shifting. We use optimal
smoothing. This method was introduced by George .
It consists in moving the mesh vertexes to increase the
element quality. And it is applied to the free vertexes
which do not belong to the boundary surfaces or any
constrained inner surface.

Let P be a free vertex, and B(P) be the ball
associated with P(i.e. the set of elements sharing P) .
B(P)
respect to P. Let F be the boundary faces of the

constitutes a star-shaped polyhedron with

polyhedron surrounding the elements of B(P). For
each face f of F,we define an “optimal” point P;, so
that the tetrahedron based on f is optimally shaped and
the latter is in the same side of f* with respect to P.
Then we move P “step-by-step” to the centroid of
B(P),if the quality of the worst element is improved.

3.2 Local mesh modification

This optimization stage consists of improving the

element quality using local topological mesh

modifications. We use the methods introduced by
Rassineux " .

(D Meshing around an edge. Selecting an edge of
a bad-quality tetrahedron and remeshing the shell
consisting of all tetrahedrons which share this edge.

(@ Meshing a shell by deletion. Selecting a
face(not constrained or boundary) of a bad-quality
tetrahedron and remeshing the shell which consists of

all the tetrahedrons sharing this face into three

tetrahedra.
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(@ Meshing by nodal insertion. Improving the
quality of the shell consititued by all the tetrahedra
sharing the edge by remeshing around free edges (not
boundary or constrained), which generating a node at
the center of the shell.

@ Meshing by nodal deletion. Coarsening the
mesh by remeshing the shell constituted by all the
tetrahedra sharing the same node and delete the node.

In our global optimization procedure, we first
apply the optimal Lapacian smoothing for vertex
relocating; then, we search for the bad-quality
tetrahedra and perform one or several (in proper order)
of the above local transformation procedures, and
finally apply the optimal Lapacian smoothing again.
We find this combination of optimization procedures is

very effective.

4 Meshing Scheme

As a summary of the previous sections, we have
the following mesh scheme.

Firstly, we create the surface triangulation of the
boundary data and specified items of the domain and
make a proper treatment of the triangulation. Then

Step 1

dary points and specified field points to form a

Apply the Delaunay method to the boun-

tetrahedronzation of the convex hull of these points.

Step 2 Form a semi-boundary mesh of the
formed convex tetrahedronization through retaining the
valid element, deleting the invalid elements and adding
the surface triangulation.

Step 3 Apply a simplified version of the advan-
cing front method to complete the boundary meshing.

Step 4 Use the advancing front method to gen-
erate the inner points and apply the Delaunay method
to insert them into the boundary mesh.

Step 5 Apply a combination of optimal Lapacian
smoothing and local mesh transformation to improve the

mesh quality.

5 Application Examples

We have selected two examples of meshes created

using the proposed method to demonstrate the
robustness and efficiency of it. The first example is a

meshing of a complex geometric model with several very

narrow air gaps, of which the mesh has large element
size-ratio. The second one is a half of a large
transformer, of which the mesh has local refinement in
the iron core.Fig.1 and Fig.2 show the two meshes

respectively.
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Fig.1 A tetrahedronal mesh of a complex geometric

model with very narrow air gaps

Fig.2 A tetrahedronal mesh of a half of a large

transformer with mesh refinement in the iron core

6 Concluding Remark and Future Work

We have presented a Delaunay-based method
which is coupled with advancing front method for
meshing arbitrary 3D domains. The first couplement of
Delaunay meshing and AFT tetrahedronization solves
the hardnut: boundary integrity and get the boundary
mesh. The second couplement combines the advantages
of efficiency and nice mathematical properties of a
Delaunay approach and the advancing front
high-quality point placement strategy. The optimization
procedures improve the mesh quality. Complex
numerical examples have been shown to illustrate the
capability and robustness of the meshing scheme.

Future work, in short, is as follows.

1) The improvement of the element deletion and
Steiner points addition strategy for Schrondert cases.

2) The

improvement of the optimization
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procedure.

(1]

[2]

3) Extension to the isotropic and ansitropic cases.
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