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Abstract:

This paper investigates the absolute exponential stability of generalized neural networks with a general class of

partially Lipschitz continuous and monotone increasing activation functions. The main obtained result is that if the

interconnection matrix T of the neural system satisfies that — T is an H-matrix with nonnegative diagonal elements, then the

neural system is absolutely exponentially stable( AEST). The Hopfield network, Cellular neural network and Bidirectional

assoclative memory network are special cases of the network model considered in this paper. So this work gives some

improvements to the previous ones.
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For an absolutely stable (ABST) neural network
has the ideal characteristics that for any neuron
activation in a proper class of sigmoid functions and
other network parameters the network has a unique and
stable (GAS)
point. Recently, the analysis of absolute stability of
neural networks has been studied'™ . The ABST

property of neural networks is very attractive in their

globally asymptotically equilibrium

applications for solving optimization problems, such as
linear and quadratic programming, because it implies
that the optimization neural networks are devoid of the
spurious suboptimal responses for any activation
functions in the proper class and other network
parameters. The ABST neural networks are thus
regarded as the most suitable ones for solving
optimization problems.

The existing ABST results of neural networks in
Refs. [1 — 8] were obtained within the classes of

bounded and differentiable

However, in practical optimization applications, it is

activation functions.

not uncommon that the activation functions in

optimization neural networks are unbounded and/or

nondifferentially as  demonstrated in  previous
9-12]

work! Moreover, it is desirable that the neural

stable at any

[11-16]
convergence rate .

networks are globally exponential
prescribed  exponential
Motivated by these, the

exponential stability of neural networks is deemed

analysis of absolute

necessary and  rewarding”’ . An  absolutely
exponentially stable (AEST) neural network means that

the network has a unique and globally exponentially
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stable equilibrium point for any activation functions in
the proper class and other network parameters.

The main purpose of this paper is to follow the
idea obtained in Ref. [9] and provide an AEST result
for generalized dynamical neural networks, which can
be stated as follows: if the interconnection matrix T of
the network system satisfies that — T is an H-matrix
with nonnegative diagonal elements, then the network
system is AEST with respect to a general class of
partially Lipschitz continuous and monotone increasing
activation functions. The obtained AEST result of the
generalized dynamical neural networks in the paper is

first proposed in the literature.
1 Neural Network Model and Preliminaries

Consider the generalized dynamical neural
network model described by the system of differential
equations in the form

x =-Df(x) + Tg(x) + I (1)
where x = (xl,xz,"',xn)vr € R, Disann x n
constant diagonal matrix with diagonal elements d; >
0,:=1,2,,n,T = (T,-j) iIs an n X n constant
interconnection matrix, f(x) = (f;(x;),f(x,),+,

f;1<xn))T e R” andf;(x,)(l/ = 1,2,"',”) iS defined

as

m(x, — 1) +1 x =1
fa(xl) =\% ‘xi <1 (2)
m(x, +1) -1 x <-1

where m = l.g(x) = (g](x1),gz(xz),“',gn(xn»T:

R" — R" is a nonlinear vector-valued activation
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function and I = (I,,1,,*, 1, )" € R" is a constant
input vector.

Assume that g belongs to the class PLI (partially
lipschitz and increasing) of activation functions defined
by the property that g &€ PLI if for ¢ = 1,2,:**,n,
g2:(x;): R — R is a partially Lipschitz continuous and
monotone increasing function. A function h(,o) :R —
R is said to be partially Lipschitz continuous in R if
for any p € R there exists a positive number /, such
that

[h(0) - h(p)| < ,10-0l YOER (3)

It can be seen that a function g & PLI may be
unbounded and/or non-differentiable. In Ref. [9],
Liang and Wang have shown that several classes of
activation functions in common use are special ones of
the PLI class.

Model (1) serves as a general framework for
neural network models. The neural network model
includes some well-known networks as its special
cases, for example,

1) When g, is the Sigmoid function, f;(x) = «,
i € {1,2,-,n}, model (1) turns to a Hopfield
neural network;

2) When g, is piecewise linear function, f;(x) =
x, i € {1,2,--,n!, model (1) turns to a Cellular
neural network''®"’ ;

3) When D is an identity matrix, f;(x) = x, n

is an even number and the weight matrices T =

0o T

( 1) ,and T,, T, are (n/2) x (n/2) matrices,
T, 0

model (1) reduces to a Bidirectional associative

memory (BAM) network ™’ .

If ¢ € PLI, then the vector field defined by the
right hand of system (1), — Df(x) + Tg(x) + I,
satisfies a local Lipschitz condition. By the theorem of
local existence and uniqueness for the solutions of
ordinary differential equations (ODE):M , for any x,
€ R", there exists a unique solution of the autonomous
system (1) denoted by x(t,x,) for t € [05¢" (%))
satisfying x(0;x,) = x,, where t " (x,) € (0, + )
or t (x5) =+ o such that [0,¢" (x,)) is the
maximal right existence interval of the solution x(¢;
%) . It will be found, in section 2, that the solution
x(t;x,) is actually bounded for ¢ € (0,7 (x,)). By
the continuation theorem for the solutions of ODE, we
can conclude that " (x,) =+ . In the following
definitions of stability, we will denote x(¢;x,) for ¢

€ [0, + ®) as the global solution of system (1)

uniquely determined by the initial condition x(0; x,)

= x, € R". Moreover, we will use two equivalent

n
norms of vector x in R", i.e., | x| = (Zx%)l/z and

i=1
n

Ixly = >0 [
i=1

Definition 1

An equilibrium point x* € R" of
system (1) is a constant solution of (1), i.e., it
satisfies the algebraic equation — Df(x" ) + Tg(x")
+ I = 0. The equilibrium x " is said to be GES if there
exist two positive constants @ > 0 and 8 > 0 such that
for any x, € R" and t € [0, + «)

[xCiing) = 2" < allao - " Jexp(- 1)

Definition 2 System (1) is said to be AEST with
respect to the class PLI if it possesses a GES
equilibrium point for every function g &€ PLI, every
input vector I € R", and any positive diagonal matrix
D.

It is obvious that an AEST neural network system
(1) is ABST because the GES property implies the GAS
one.

For the proof of AEST result of neural network
model (1) in section 2, we require some knowledge in
matrix types with their characteristics and some
concepts from degree theory. Their details can be found

in Ref.[9] and its references therein.
2 AEST Result and Its Proof

In this section, we give the main result as follows.

Theorem 1 If - T is an H-matrix with
nonnegative diagonal elements, then the neural
network system (1) is AEST with respect to the class
PLI.

Proof Fix g € PLI, I € R" and the positive
diagonal matrix D . Suppose that — T is an H-matrix
Then, its

comparison matrix M( — T) is an M-matrix which

with nonnegative diagonal elements.
diagonal elements are — T;(i = 1,2,+*+,n). Thus, for
any positive diagonal matrix K = diag(K,,K,,**,K,)
the matrix M(- T) + K is a nonsingular M-matrix.
Therefore, its transposition (M(=T) + K)" is also.
It follows that there exists a positive diagonal matrix A

= diag(kl ,Ay, ", A, ) such that

AJTI/ + Z/\l Tij| < A]I(; ] = 1,2’...’n (4)
i)
Step 1 Let H(x) = Df(x) - Tg(x) - I(x €

R"), then x~ € R" is an equilibrium of the network
system the form H(x) = Df(x) — TG(x) + V, where
the function G(x) = (G, (x,),G,(x,),+, G, (x,))"
= g(x) — g(0) € PLI satisfying G(0) = 0, and the
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V = (Vl’Vz»"',Vn)T = - Tg(O) -I€R".
Since g € PLI, by (2) there exist positive
constants [, > 0(i = 1,2,--,n) such that
| Gi(xi)‘ = ‘gz(xz) - gi<0)‘ <!
for x;, € R and i = 1,2,
positive diagonal matrix K as K, = d;/21, > 0(j = 1,

vector

X;

,n.We can select the

2,-:+,n) for which the inequality (4) holds for some
= diag(A,,A,,",1,).

Construct the nonempty, bounded and open subset

Q - {xER"

T

positive diagonal matrix A

||x”1 < r{ 5 {0} for some r > 0 and

the homotopy h(x3;A) = [h (x31),hy(x31), -,
h,(x;2) 1" € R" defined as
h(x;2) = Af(x) + (1 = A)H(x)
x € Q. ,1 €1[0,1]

S dre Rl <
we will prove that for sufficiently large r > 0, h(x3;1)
~0forx €N, = {xER" ||x||l =rland A € [0,

1].
Let the signum function sgn(p)(p € R) be

defined as 1 if p > 0;0if p = 05 and — 1 if p < O.

Then, we have

Zn) Aisen(a by (x34) = Z": Aisgn(x )[4 + (1= A)d; [f(w;) +

where £, .In the following,

Lasgnu)[(a-l);ncj(xnu V] =
Zx,- A+ (1-2)d ]

=037

=l i#j

= (I—A)ZAjTﬂ--\ G (x| -

|6 ()] -

;Aj[k+(l—/1)djﬂxj\_(1_A);Aj]<j‘cj(xj)‘_

QBZ%‘[“*]O—W] (505wl -0
j=1

- A)ZA|V\

mln (mln(/\ /2, /\d/4)) > 0.

j=1.2,"
Thus, if r > 0/w, from the inequality above,

then we can get that for x € J€, and A € [0,1],

0 and w =

where 0 =

ZAisgn(xi)h[(x;/\) > 0, which implies that h(x;
i=1

A) s 0.By the homotopy invariance property, we have
that d(h(2;0);0,9,) = d(h(z;1);0,92,), i.e.,
that d(H;0,902,) = d(id;0,92,) = 1 =« 0. Thus,
H(x) = 0 has at least one solution in £2, c R". Now,
we show that there is at most one solution of H(x) = 0

in R" by the contradiction method. Assume that x) =

(20, 20 2 0)T € R and 1@ = (22,22,

9 ’

xf)) E R" be two different solutions of H(x) = 0.

This means
Df(xm) - Tg(x“)) -1 =
Df(xm) _ Tg(x(2)> _I1=0
and hence
(- T)[g(xm)— g(xm)] =
D[f(xm) —f(xm)] -~ 0
1) = g(6®) - g(x) € R,
then (- T)x = 0 and hence x = 0. Since - T € P,

,n} such that ;c; =

Let x = (2,2,

there exists an index i € {1,2,-
gi(x?)) gl(xm) =% 0 and ;c(— T;c> =

X [f(xm) f(xm)] 0. The last inequality is
equ1valent to x; [ W _ x J 0 because of d; > 0

and [f(x"") —f<x<.2>>1[x5” R

noting the 1nequahty xm -

0. Moreover,
" 2 0 from x;, % 0, we
know that x; [x, - x } 2 O Therefore, we should
have ;c [xm - xEZ)] > 0, i.e., that [gi(xi ) —
g[(x,l) )][x,” - xi”} > 0. This is in contradiction
with the monotone increasing property of g;(x;) .

At this point, we have shown that the network
system (1) has a unique equilibrium point which can
be denoted by x* = (x; ,x, ,***, %, y' € R

Step 2 Forany x, € R", let x(t;x,) for t €
[0, " (x,)) be the unique solution of the autonomous
system (1) satisfying the unique solution of the
autonomous system (1) satisfying the initial condition
x(05x,) = %, where t* (x,) € (0, + ) ort” (x,)
=+ o such that [0,¢" (x,)) is the maximal right
existence interval of the solution x(¢;x,). Let 2(t) =
(2 (1), 2(2),,2,(0))" = x(t52%)) —x" € R for
t € [0,¢t" (xy)). Then, z(t) satisfies the following
ODE of the form

dz(t)/dt = = Df(z(1)) + Tg(z(1))

Vi€ [0, (x)) (5)
with the initial condition z(0) = x, — =
vector-valued function f( z) (]1 (z,) ,fz (z5),",
f.(z,))" € R" is defined by f(z) = f(z + ") -
f(x") and g(2) = (g,(2),8,(2),,g,(z)) €
R" is defined by g(z) = g(z+x" ) —g(x") for z =
(2152, 2, Y EeR satisfying](O) =0 and gr(()) =
0, respectively. Similarly, from the assumption of g &

, where the

PLI, by (3) there exist positive constants g; > 0(i =
1,2,:+-,n) such that

’éi(zi)‘ = ‘gi(zi +x; ) -
forz;, € Rand i = 1,2,-"",n.
will take the positive diagonal matrix K as K, =
di/(2p;) > 0(j = 1,2,
positive diagonal matrix A = diag(A,,4,,"",4,)

g(x ) <p

In what follows, we

R4

i

,n) for which there exists a
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satisfying the inequality (4).

Construct the Lyapunov function V(z) =

for z € R". Define the right and upper

2

Dini derivative of V(z) along the solution z(t) by

w = limsup[ V(z(t + h)) -

0"
V(z(t))1/h
Computing the Dini derivative of V(z) along the
solution z(¢) for t € [0,¢" (x,)), we have
& Vale)) iaisgn@(t))[ df () +
L % T (5 ()] < Ldk 5] +

ZA 7, ] g (5(0)] + 2 Sl

SN 50+ Sk g (5(0) | <
o
_7;‘%‘%“)|<—

where d,;, = m1n d > 0.
j=1,2,-

By the companson principle, from the above

\éj<z,-<t>>| <

(duin/2)V(2(1)) <O 1 €[0,17 (x))

differential inequality we have

V(z(1)) < V(2(0))exp(- d,;,1/2)
t € 10,1 (x)) (6)
Let the two constants A, = max . A; > 0 and
j= s
Apin = mln ){ > 0, then we get A,;, 2|, <
V(z) < || z”l for z € R". Thus, note that z(t) =
(Z1<t),22<t),"',zn<t)> = x(t;xo) - x N lt can
be inferred from (6) that for ¢t € [0,¢" (x,))
. A
|xCes20) = 27 [, sTon — x| exp(= dpt/2)

(7)
The above inequality implies that the solution
x(t;x,) is bounded for ¢ € [0,1" (x,)). By the
continuation theorem for the solutions of ODE, we can
conclude that ¢t* (x,) =+ ® and the inequality (7)
still holds for ¢+ € [0, ). In view of the equivalence
of the norms H x Hl and H x || , by definition 1 and (7)),
x " is the GES equilibrium of the system (1) .
Integrating the above results, we have completed
the proof of AEST result of the network system (1) .
Remark 1
exponential convergence rate of any network trajectory

has a lower bound of d.. /2. On the other hand,

min

The inequality (7) implies that the

putting T equal to the zero matrix in the network model
(1), we can easily see that the possible lower bound
for the exponential convergence rate of the network

When the

network model (1) is used for solving optimization

trajectory cannot be greater than d ., .

problem and the larger exponential convergence rate of
network trajectories is desired, we can use the
following modified network model

rdx/dt = - Df(x) + Tg(x) + 1
where 7 > 0 is a time constant. It is obvious that the
exponential convergence rate of any trajectory for the
above modified network model has a lower bound of
d.i/(27). Thus, the exponential convergence rate of
the network trajectory can be made arbitrarily large by
tuning downward the time constant 7 > 0.

Remark 2 lLet g(x) is

activation functions, then the network system (1) is a

piecewise linear

VLSI-oriented continuous-time cellular neural networks
(CNNs) proposed by [23]. So, the GES result of the
VLSI-oriented CNNs is obtained
simultaneously.

Remark 3 Let m = 1in (1) and g(x) € PLI,
then it is obviously shown that the AEST result of [9]

is special case of this paper.

continuous-time

3 Conclusion

In this paper, we have obtained a new AEST
result of the neural networks (1) with partially
Lipschitz activation functions. Without assuming the
boundedness and differentiability of the activation
functions, the conditions ensuring the existence and
uniqueness of the equilibrium are obtained. The
network model considered here is general and includes
Hopfield neural networks, Bidirectional associative
memory network and Cellular neural networks as its
special cases. The condition for global exponential
stability, which demonstrates that the network system
has the stronger global exponential stability, is easily

checked in practice by simple algebraic methods.
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