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The Mechanism of Eliminating Harmonic Resonance with
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Abstract:  The phenomenon of anti-symmetrical bifurcation of periodic solutions occurring near an integral manifold is the
intrinsic cause resulting in harmonic resonance over-voltage in power systems. Due to this discovery, the principle of
eliminating resonance by using anti-bifurcation technique is presented, which makes that the theoretical bases of very measure
to eliminate resonance are unified firstly from a point of view of basic theory. Our discussion models depend on a class of
nonlinear control model. Using the direct Lyapunov method, a complete theoretical proof is given in accordance with the
measure of eliminating resonance by connecting nonlinear resistor in series to the neutral point of P. T., and the feedback
control law being applied. It comprises the action of parameters of resistor to eliminate resonance and the actual process of
eliminating resonance, i.e., to go against bifurcation process which forces the big harmonic solutions to retreat to the integral
manifold gradually and disappear eventually, which by using the nonlinear controllers. This makes it sure that the intrinsic
cause of resonance is eliminated thoroughly.The obtained theory results and computing results are better than the presented
results.
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The resonant over-voltage which appears frequently in ungrounded systems brings enormous economical lose.
Among these the accidents caused by harmonic resonance over-voltage make up certain proportion. From 1940s
over-voltage experts began to pour their major vigor to search for all kinds of ways to eliminate resonance. The early
researches on this topic can be found in Refs. [1 = 3]. The recent results can be found in Ref.[4]. The common
weakness in these works is that the basic theory level was not raised and any complete theoretical proof was not
given. Therefore, we lacked complete rational knowledge about applied range and the action of some related
parameters to eliminate resonance etc. It makes that sometime ones have one-sidedness on these problems, even

plunge into blindness. This paper is a sequel of the authors’ recent works>™

. On the basis of discovering the
secret of the harmonic resonance, we put the stress on the establishment of the theoretical basis of eliminating
harmonic resonance. The core of this theory is eliminating resonance by anti-bifurcation, which the researched
models are the nonlinear high-order control mathematical models. It makes that the mechanisms of every measure of
eliminating resonance are unified theoretically. A complete theoretical proof is given in accordance with a kind of
measures of eliminating resonance by connecting nonlinear resistor in series to the neutral point of P. T. (potential
transformer) in this paper. The obtained results give a complete theoretical basis for power systems to avoid being
damaged by harmonic resonance, and the given model is a kind of nonlinear control system. Therefore, the result
submits an easy method to seek for eliminating resonance, and can be applied to the nonlinear systems. In this way,
one of the basic theories for researches of eliminating resonance, which were never solved for a long time, is mainly

solved.
1 Eliminating Resonance by Anti-Bifurcation

There exists a two-dimensional integral manifold, on which there is only one asymptotically stable harmonic
solution, the four-dimensional phase space models of the power systems was disclosed ™ . This solution
corresponds to the case of regular power supply. The saturation of the core of P. T. leads to the increase of

nonlinearility. As a result, the anti-symmetrical bifurcation of periodic solutions occurs in the region near the
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integral manifold and in addition to the asymptotically stable harmonic solution, there are two big harmonic
solutions bifurcating from the integral manifold. The occurrence of this makes up the internal causes resulting in
over-voltage. If power systems are excited by external stimuli, for example, the operation of switches, it will result
in harmonic resonance over-voltage directly. In order to differentiate the two kinds of harmonic solutions, one of
them is located on S, which is called small harmonic solution. Apparently, any measure to eliminate harmonic
resonance must preserve the only asymptotically stable harmonic solution on the integral manifold to guarantee the
system continues to supply power normally. In the meantime the two big harmonic solutions induced by bifurcation
must be confined or even eliminated to wipe out the intrinsic causes of harmonic resonance. This reverse bifurcation
process makes the big harmonic solutions that retreat to the integral manifold gradually and disappear eventually.
This idea is called the principle of eliminating resonance by anti-bifurcation. Any effective measure to eliminate
resonance must accord with this principle. Then, every theoretical basis of the measures to eliminating resonance is

unified completely.
2 Nonlinear Control Model

Some laboratory tests and computer-aided analysis have been undertaken™ . Ferromagnetic resonance
over-voltage is a lasting nonlinear resonance phenomena that appeared in tank circuit with the action of iron core
inductance saturation magnetization. Resonance formed in circuit that related to three phases closely, it will be
difficult to study the system’s complex mechanism (such as theory, applications etc). However, as linearizing
mathematical models are used, the analysis can be dealt with by the methods of linear superposition of effects of
successive three-phase closing process (e.g.,1.A. Wright had given the unsimplified reason and arranged in a line
to prove it). Germand first set up three-phase nonlinear mathematical model in power system in 1975, even the
model is found incomprehensive now, it will show the discussion to resonance mechanism of the switching
over-voltage must be in high dimension space. Generally, over-voltage produced by closing of three-phase is a
nonlinear phenomenon in nature. On the other hand, there are some inductive elements with core in power system,
due to the operation or other causes cores tent to saturate and inductors with cores may become nonlinear. It is clear
that in order to further research on the mechanism of over-voltage caused by three-phase closing of switches, the
nonlinear mathematical model must be set up, and then the switching over-voltage to the system is analyzed.
Summed up the above discussion, the key of the over-voltage depends on two factors (nonlinear, high-dimension) .
To study the mechanism of higher over-voltage caused by closing of switches in power system, we must set up
nonlinear high-dimensional mathematical model to study it. By using the sensitivity coefficient method and the
fractional iterative methods of functional differential equations, we have obtained sub-optimum and its designing
process of the nonlinear control over-voltage model in [8]. We have given a characterization of stability margins
achieved with the inverse optimal control law in [9].

If connecting a nonlinear resistor, which is characterized by U = Ai in series to the neutral point of P. T.,
effectively eliminating resonance can be realized. We will deal with this as an example to give a complete proof of
the basic theory and make use of it to illustrate the connotation of eliminating resonance by anti-bifurcation

concretely. The nonlinear control mathematical model connected with nonlinear resistor can be expressed as’”

d%z(t)+(k+d+9b§0?(t))d¢é—m+k(a§0l(t)+bgo‘f(t))+W+111(t) =§Ecos(t+£)
” t L
T v a9 (01 2 L k() + () + W s 10 (0) = = D eos( 1 + X
dt2 + + a + gozt + ap,(t) + 0, (1 + +u2t=—2cost+6
where
W= Blale, + @) + b0 + .°)] + kGLa(e, + @) + b + ¢,°)]* +
9 9y Ja-1 dp, de, d ¢ d
aGla(g, + ¢,) + b(@] + ¢;)] [a(d—gi+d—¢t)+9b(gp dgi zdi)

Similar to the method of [7], then (1) is equivalent to
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% = %, = kx, _f(xl) - G[f(%) +f(xg)J“
dx, - .
o = W) = L) + fQa) ] = RGL () + f(a) 1% = uy + ZECOS(L . 6)
(2)
% = wy — kg — f(x3) = GLf(xy) + f(xy) ]
% =— kf(xy) = BLA(wy) + fa3) ] = KGLf(xy) + f(x3) ] - ZLZ —J;Ecos(t + %)
where x, = ¢@,,%; = ¢,.a s a non-integral positive number, G = A M, where  is the frequency of power

supply, 7 is wasted resistance of P. T., A is characteristic parameter of nonlinear resistor (constant), ¢, , ¢, are
the magnetic linkage and ¢, is the per unit value of magnetic linkage, f(x;) = ax; + bx;,j = 1,3,a,b,k,G,0,
E are positive constants which depend on the parameters of circuit. Sometimes, for the sake of convenience, the

mathematical model (1) is equivalent to another form as follows:

% = = hy = flx) = GLA(x) + fs) ] = uy + p(2)
% = — b)) = BLA(x) + ()] = kGLA(x)) + f(3)] .
% = wy — ks = f(x3) = GLA(x)) + f(a3) ] = up = p(2)
S ) = BLA) + £ ] = KGLACx) + f(x) )

where

u, = Jiﬂﬁl(s)ds + ﬁl(— %) s Uy = J.tﬂih(s)ds + ;Lz(— %) ,p(t) = gEJtﬂcos(s + %)ds.
- 6 6

6
The deduction is analogous in Ref.[5]. We will choose (2) and (3) according to our needs. For G = 0, the
corresponding system is denoted by (4) or (5), respectively, i. e.,

dx,
E = X, — kxl —f(x1>
dx, . . : U
0= W) =BG + f(x)] - +%§ECOS(”%) (4)
BN
E = x4 — kx; —f(xz)
% =— kf(xy) = BLA(wy) + f(x3)] = l~L2 - gEcos(l + %)
and
dx,
DA kx, — f(x) = uy + p(t)
% = = kf(x) = BLACx) + f(x)]
dx ?
o= %= ke = () = ws - p(0)
% = — kf(xs) = BLACx) + fx3)]

Let ¥ = {x|x € R*and x, + x; = 0}, S) = {x|x € R*and x, + x, = 0}, and S = {x|x € R*and x € S}
N S5|. Then S is the integral manifold of (4)[5] .

3 The Invariance of the Integral Manifold Under

Let the control inputs be chosen by
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== klay + 03] + 0 0f(x) + f(x3)] (6)
and
u, :—kz[xl +x3]+lz[f(x1)+f(x3ﬂ (7)
Then the invariance of the integral manifold under the perturbation of the closed-loop system may be expressed
as follows:

Case ] [ G = 0 — no nonlinear resistor] Here S is a two-dimensional integral manifold of the closed-loop
system (5). There exists only one asymptotically stable harmonic solution on S, and this solution of the closed-loop
system is also globally stable in the sense of two-dimension'’ .

Case 2 [ G > 0 — nonlinear resistor is joining-up in series] Here S is still a two-dimensional integral
manifold of the closed-loop system (3). The qualitative structure of the phase trajectories on it keeps invariant,
i.e., the same as that of case 1, since f(x,) + f(x3;) = 0 on S. Then, the closed-loop system (3) degenerates
into the closed-loop system (5) on S.

Case 3 [ no saturable core| Consider the first approximate system of the closed-loop system of (5).

d
% =—(k+a-k)x +x + kixy +p(t)
% =—a(k + B)x, — aPx;
¢ (8)
d
% =kx, - (k+a—-k)xs + 2, — p(t)
dx
d—; = — aﬁxl - (l(k + ‘8).963

Similar to [5], we can prove that S is still an integral manifold of the closed-loop system (8). The qualitative
structure of phase trajectories on it is the same as that of the two cases above. On the other hand, the characteristic
equation of the closed-loop system (8) has two negative roots and a pair of conjugate complex roots at least as

follows:

Mi=—ads =-hkidsy = (ky—a-k+y(a+k-2k) —4ak —SaB)/Q (9)
When the feedback control laws (6) and (7) satisfy that

R o Vak v 2ap < b < “EE L2 ek v 2aB (10)

the closed-loop system (8) has only harmonic solution in the sense of 4-dimension. Then the unique harmonic

solution of the closed-loop system (8) on S in the sense of 4-dimension coincides with that of closed-loop system
(8) on S in the sense on 2-dimension. If the closed-loop system (8) is regarded as an unperturbed equation, then
case 1 means that S and the qualitative structure of phase trajectories on it remain invariant under the perturbance
of the nonlinear terms bx? " bxi on the right-hand sides of the closed-loop system (8). Case 2 means that S and the
qualitative structure of phase trajectories on it also keep invariant under the perturbance of the nonlinear terms bx} ,
bxi and G[f(x,) + f(x;)]* on the right-hand sides of the closed-loop system (8). This invariance of integral
manifold reflects that saturation of the core of P. T. The measure of eliminating resonance is given by the
connecting nonlinear resistor in series to the neutral point of P. T., and the nonlinear controllers are applied,
which do not damage the theoretical basis for the normal furnishing power of the system. Then it realizes the

elementary requirement to eliminate resonance by anti-bifurcation in the first stage.
4 The Mechanism of Eliminating Resonance

In this section, we will illustrate the intrinsic mechanism of eliminating resonance with the nonlinear resistor
and nonlinear controllers. We have the following theorem.
Theorem Let the nonlinear control input of (2) be given by
111,2 = clay + a3 + el f(x) + f(x3)] (11)

where
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e < min(zlg(k + )k + 3aB(k +2;8)\/ 3pkb’
kCh +28) N Q2K +4)(k +2)

c+ae<m1n(9‘8k(]i—§; 7 _bz)

then all solutions of closed-loop system of (2) are uniformly ultimately bounded and the ultimately bounded region

(12)

of the solutions of closed-loop system of (2) must be a proper subset of Z, which the set = is defined by
,_,:{x”x,‘gMz,‘xz‘ng, x3‘$M2’ x4‘SM1} (13)

Suppose a = 4 ,p and ¢ are relatively prime odd numbers and there exist three constants L;(j = 1,2,3) such
that
‘f2<x2i)|$Ll"f,?(xZi—l)‘gL2’|f4<x2571)‘$l‘3 i =1,2 (14)
1
for any ‘ i | < Nyy | %25y | < N, and |x2i—l ‘ < NJ.

Let L = 22 L;, some parameters are denoted by
=1

.Ql =%—2(a6+0)2+b2),N4 = /%‘

2 5 (15)

M, = max{N,,N,|,M, = max{N,,N;, Ny}
Proof Let the Lyapunov function be denoted as follows:

V = %@(xi +a7) + k(k4;2@ X+ x3) + (ﬁ)z(xz - %)+

k
gM‘k—;z@[F(%l) + F(x3)] = (b + Bayxy = (b + B)ayxy — Bryxy — By, (16)

where F(xj) = J:f(s)ds,j =

Then V is a continuous positive infinitely large function and there exist positive continuous functions A(r) and
B(r) such that
Al < V(x) < B limA(r) =+ (17)

The proof is analogous to the work in Ref.[6], here we do not explain any more.

Let g = [f(x,) + f(x;)]%, then

V‘m - k—fﬁxz(_ kf(xl) - B(f(xl) +f(xz)) - kGg - ZL] +§Ecos(t + %))+

LJ;ngm(— kf(x;) — B(f(x, + f(x3)) - kGg — u, —J;Ecos(t + %))+

[k(k + ZB)]xl[xZ - kxl —f<x1) - Gg] + I:k(k + 2ﬁ)1x3[x4 - kx3 —f(x3> - Gg] +
2(%) (x, - x4)(— kf(x,) + kf(x3) +«/§ECOS(L + %) - u, + L~L2) +
2200wy = ke = fx) = G) + B ) ey ey = ) - ) -

(k + ﬁ)xl(— Ef(x) - B(f(xy) + f(x5)) — kGg — ;1 +§Ecos(t + %))—
(k + ﬁ)xz[xz = kx] _f<x]) - Gg} - (k + B>x4[x4 = kx3 —f(x3) - Cg}

~ (k+ ﬂ)xg(— W (xs) = B(f(x) + f(x3)) = kGg — us _ggcos(t N %))_

Bxl( — kf(x3) = B(f(x) + f(x3)) = kGg — u, —gEcos(t + %) ) _
ﬁxz;l:xz - kx, —f(xl) - Gg] - sz[x4 — kxy —f(x3) _ Gg]
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= Pos| = kf(x,) = B(f(xy) + f(x3)) — kGg — w0, +gEcos(t + %)) =
Pl = BEE2E=2D 01 ) 4 ) (1)

Putting this in order, we have
I7‘<4) S—f1<x) —f2<x2) —f3(x1) —fz(xzx) —f3(x3) —f4(x1) —f4(9€3) (19)

where

0 = [E 2o+ 0w )] 4 [BELDE o yggpe 2ELZVC] 0

[% ~2((ae + ¢) + bz)] x42 + [M;]CZM - (k +2,8)262 - %M] x318

fz(le) =~

[@E(k +28) 2J§Eﬁz] | s
kz 2i
ﬁEk

f3(x2i-|) = [;8(]5 + ﬁ)a - (/‘C + 2;8)(0 + aeﬂxgi-l - ‘xZi—l‘ (20>
i) = [28Ck + B)b + 3abﬁ<’f +28) _ 23>be]x£?_1 -
2
2 2 k +2,8
3 3)d 3y
Wk ;kz b _ K (k +28) + 2k ;22 i, (k +28)*(ae + ¢) + bz}x;* i=12
Then f,(x,;) = 0 for every ’xZi Nis f3(x5,) = 0 for every ’xz, | ‘ N, and f,(x,5,_,;) = 0O for every
‘%2571‘> N;il‘,i = 1,2. One or more of f,(x,;),f;(x,_) and f,(x,,_,) may be negative if ‘xZi < N,
‘ Xai ‘ N, and ‘ Xai ‘ Nﬁ are involved. In this case, those have maximal value respectively according to the

property of continuous functions. Suppose that there exist three constants L;(j = 1,2,3) such that
‘f2<x2i) | < L, f3Cagiy) ‘ < L,, f;t<x2i—l) ‘ < L; i =1,2

the above-mentioned results imply that

V‘(4) = Z[|f2(x25>‘+ ‘Jf}(xzi-l)“" ‘f4<x2i—1)H - [émk—;kZM - (k +2ﬂ>262 -
Z(k;kgm] X" - [% —2((ae + ¢)* + b2>]x42 - [ ~2((ae + ¢)* + bz)]x22 -

[3@(1: ;—k2§)b2 —(k+ 2‘8)262 B 2(k +k%é)262] 28 (21)

SIS

0
Note that 7‘9@2 = L for every ‘x% = N5 2,2, = L for every |x2,-_1 | = N;
Therefore, we have
, 0 0
Vo <=5 G+ ad) - FGF + ) <- COnllxl < (22)
On the complementary set =° of & = {x“?ﬁ ‘ = M,, xz| =M, x3|< M,, x4‘ < M.}, where £ is a
p y

bounded set and C(r) is a certain positive continuous function. Then all solutions of the closed-loop system (4) are

uniformly ultimately bounded”® and the bounded set = is an estimation of the ultimately region of the solutions of

q+p 2@(k-;ﬁ-2§)0[f<xl)+

the closed-loop system (4). Suppose 1 + a = ) ,P + ¢ is an even number, i.e., —

I+a
f( x;)] < 0. Therefore, according to (19) and (22), the solutions of the closed-loop system of (2) are

uniformly ultimately bounded and the ultimately bounded region of the solutions of the closed-loop system of (2)
must be a proper subset of =, are obtained. This completes our proof.

Remark 1 In order to grasp the relevant relation between the proper subset of the related parameters of the
characteristic of nonlinear resistor and control terms, for any M; > 0, M, > 0 such that M; < M,,M, < M,,

consider the subset =, of = as follows:



170 Wu Qiong, Ji Guojun, Song Wenzhong, and Dai Xianzhong

2 = xHxl‘ M,, xz‘ My, x}‘ M4,‘x4|
On E\E,, - fo(x,) = f5(x;) = folxy) = f5(x3) = fi(xy) —f4(x3) has a maximal value L and [f(x,) +
j(x3)] ** has a minimal value L. If there holds
kL
=280k +200L (23)
then

- A = Al = ) - ) - filx) - filae) - BEEZOC 0 g <
28(k +28)GL

L-——— <90

k =
On the complementary set = of =, this inequality implies that

Vlie = Vi —g‘m—zzw[ﬂxl) + fla) " <— filw) = -

0 0
-Ql(xzz + x42> - \Qz(xllg + xslg) =- 71(9512 + x22) - 72“0118 + x318) <0 (24)

This shows that the proper subset =, is an estimation of the ultimately bounded region of the solutions of

A(p,w)*

closed-loop system of (2). There exists a large enough A in G = such that Eq. (24) holds.

To the matter of linear controllers, we have the following corollary.

Corollary Let the linear control input of (2) be given by

L~L1,2 = clx, + x3) (25)
where
aB(k + a) 2)
c<m1n( b+ 28 4_b (26)

then all solutions of closed-loop system of (2) are uniformly ultimately bounded and the ultimately bounded region
of the solutions of closed-loop system of (2) must be a proper subset of Z,, on which the set Z, is defined by

gy = {x“x,‘gﬁqw xZ‘SMu x3‘$ﬂ~42’ x4|<M1} (27)
where
Noo 3BEG+28) 123K 5 _ /3 Ek
b IS B0 T 28k + Ba -2(k +2B)¢
i 3k(2k2+ 3B)° +3l;ﬂ Zk[%lc(li;ﬁﬁf +2(k;;225)2 + (k +28)°
N, = -
280k + §)b + Sk +20) (28)
,B(k+ﬁ)a+m4‘—;k2m—az+k2(k+2ﬂ)
23(k+,6’)b+—uub (12+2 )

Suppose a = f ,p and ¢ are relatively prime odd numbers and there exist three constants L, (j = 1,2,3) such

that

‘fz(le')‘ < L, ‘fB(xZi—l)‘ < L,, f4<x25-1)‘$ L, 1 =1,2

< N19 X2i-1 ’ < Nz and |x2i—l ‘ < Nss
3

for any ‘ Xo;

Let L = 22 L;, some parameters are denoted by

k - 21
.Ql :E_<262+b2)’N4 = ‘(71

38(k +28) b ~ (L)fs (29)
2, = s =g,

M, = mafol,]NVﬂ,]lle = maX{Nz,N3,N5%
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Remark 2 The proof of theorem shows clearly that the mechanism of eliminating resonance of the nonlinear
resistor connected in series to the neutral point of P. T. and the effect of eliminating resonance of the parameters of
nonlinear resistor and nonlinear controllers can be summarized as follows:

1) Whatever measures of eliminating resonance are, first of all, they do not influence the normal furnishing
power of the system. Before the nonlinear resistor is connected in series to the neutral point of P. T., and the
suitable nonlinear controllers applied, power systems were “dissipative” (D-systems). Therefore, all solutions of
the closed-loop systems of its mathematical model were uniformly ultimately bounded. This led to the existence of

(8]

harmonic solutions™® , which provide the qualitative basis for the existence of harmonic solution on integral

manifold, thus, provide the qualitative basis for normal furnishing power. When we let the characteristic parameter

9

a of nonlinear resistor be -, where p and ¢ are relatively prime odd numbers, the dissipative property of the

systems remains invariant after the nonlinear resistor is connected in series and the nonlinear controllers are
applied. Then the uniformly ultimate boundedness of all solutions of the corresponding mathematical model of the
closed-loop systems also remains invariant. This finishes the preparation of the invariance of integral manifold and
the qualitative structure of phase trajectories on it under the perturbation of system. Therefore, it makes sure that
the measure by connecting resistor in series and the nonlinear controllers applied does not influence the normal
furnishing power of the systems.

2) The nonlinear control mathematical model of power systems, before the fact that nonlinear resistor is
connected and the nonlinear controllers is applied, has three harmonic solutions when bifurcation occurs, two of
which are large and the third is small'® , however, they can coexist only in the ultimately bounded region.

3) After the neutral point of P. T. is connected in series to a nonlinear resistor, the ultimately bunded region
of the closed-loop system varies facing on reduction in range. But when the nonlinear controllers are applied, the
ultimately bounded region be charged. The larger the characteristic parameter A of the nonlinear resistor is, the
smaller ultimately bounded region shrinks. Sufficiently large value of A is sufficient to make the ultimately bounded
region shrink into positive direction attractive domain of the small harmonic solution, i.e., it destructs the base on
which the large harmonic solutions continue to exist and thus eliminates the intrinsic cause of resonance thoroughly.

4) Note that x, = ¢,,x; = ¢,, where ¢, and @, are magnetic linkages. To reduce the range of the ultimately
bounded region means to decrease x, and x;. In engineering application, it reflects that it limits the saturation of
the core. In power systems, resonance relates closely to the saturation of the core. So the physical meaning of the
mechanism of eliminating resonance by connecting the nonlinear resistor in series to the neutral point of P. T. may
be simply summarized as anti-saturation of the core. In this paper, we consider the nonlinear controllers function
simultaneously. This simple summary can be easily understood by the numerous operators in power systems. They
have apprehended the meaning of eliminating resonance just so.

5) Consider that the application to power systems, the numerical computation is given as follows. Consider the
sampled-data

k = 0.003 27,a = 0.003 565,E = 380,b = 0.000 231 9,3 = 10.787 429, (12) implies that e <
0.000 007 611 1,¢ < 0.01920. (13), (14) and (16) imply that the positive feedback controllers will result in the
range of the ultimately bounded region in increasing and negative feedback controllers will result in its decrease.

The experimental results offered by Jiangsu Electric Test Institute, show that resonance is eliminated
completely when A = 12034.34971,e¢ = 0.000358, ¢ = 0.006573. Those results provide substantial evidence for
the demonstration of the paper.

The obtained theoretical results and computing results are better than all the previous results.
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