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Abstract:

Let G be a graph, an independent set ¥ in G is called an essential independent set (or essential set for

simplicity) , if there is {y,,y,! C Y such that dist (y,,y,) = 2. In this paper, we will use the technique of the vertex

insertion on [-connected (I = k or k + 1,k = 2) claw-free graphs to provide a unified proof for G to be hamiltonian or

k
1-hamiltonian, the sufficient conditions are expressed by the inequality concerning 2 | N(Y;)| and n(Y) for each

essential set Y = {yo,yl ,"',yk} of G, where Y, = {y,,y,_ ,"',yi,(b,l)} C Y fori € {0,1,-+

o
k! (the subscriptions of

y,»’s will be taken modulo k& + 1), b (0 < b < k + 1) is an integer, and n(Y) = | fv € V(G): dist (v,Y) < 24 ‘ .
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In this paper, the terminology and notation not
defined will follow Ref. [1], and we consider simple
finite graphs only. A graph G is called claw-free if it
has no induced subgraph isomorphic to K, ;. A cycle C
of G is called a hamiltonian cycle if C is a spanning
cycle. A graph G is called hamiltonian if there exists a
hamiltonian cycle in Gj;1-hamiltonian graph if G -
{w}! is hamiltonian for any w € V(G). An
independent set Y in G is called an essential
independent set (or essential set for simplicity) if there
is {yl ,yz} c/Y such that dist(y,,y,) = 2.

Let ¢t > 1 be an integer. Denote
I(G) = {Y|Y isan independet set of G, LY = ¢}
Iﬁe)(G) = {Y|Y is an essential set of G, ‘ Y‘ =t}

Let G be connected, Y C V(G), | Y] = ¢, and v
€ V(G). Denote dist(v,Y) = r}neiryﬂdist(v,y)% (where
dist (v,y) stands for the distaﬁce between v and y),
N.(Y) = o€ V(G): dist (v,Y) = i{(i =0,1,2,-++),
and n(Y) = [ N(Y) UMM UM = [{v €
V(G):dist (v,Y) < 2].

For each i € {0,1,2,-*- ,t!, denote

S(Y) = {v € V(G): | N(w) N Y I = if
Clearly

N(Y) = N(Y) = US.(V)

and

n(Y) = [V(e)V UNW [ < [ V(6]

Received 2001-09-21.

hamiltonicity, claw-free graph, neighborhood union, vertex insertion, essential set

In this paper, we will prove the following new
results (theorems 1 and 2) by using the vertex inserting
lemmas introduced in Ref. [4]. In theorems 1 and 2,
,ZH c Ik+](G)
which is an order set, b be an integer and 0 < b < k
+ 1. Set

Z; = %Zi, » %1y
fori € 10,1,
will be taken modulo & + 1).

Theorem 1
graph with & = 2; b an integer (0 < b < k + 1). If

5 (2) = D INZ)| > b(n(2) - 1)

for each Z € I;i)l (G), then G is hamiltonian.

In theorem 1, when b = 2, we have the following

we always assume that Z = %zo s 21,70t

’zi—(b—l)} c Z

, ki (where the subscriptions of z_,-’s

Let G be a k- connected claw-free

result.
Corollary 1 Let G be a k-connected claw-free
graph with £ = 2, and ‘ V(G)| =n.lIf

2(n -1)
|N(u) U N(U)| > k7+1

for any tu, vl c V(G), and dist (u,v) = 2, then G
is hamiltonian.

Theorem 2 Let G be a (k + 1)-connected
claw-free graph with & = 2; b an integer (0 < b < k
+1).If

0 (Z) = DINZ)| > bn(2)

i=0

for each Z & I(ki)l (G), then G is 1-hamiltonian.
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Theorem 3)  Let G be a k- connected claw-free

graph with £ = 2. If
Zd(z) >n(Z) -1

€7
for each Z & ];.i)l (G), then G is hamiltonian.
Clearly, theorem 1 improves and generalizes
theorem 3.

Finally, we will use, in additional, the following
notations.

Sometimes, by a slight abuse of notation, we shall
use the same letter for a subgraph (of G) and its vertex
set, provided no ambiguity arises.

Let U and R be subgraphs of G (or subsets of
V(G)), denoteN,(U) = N(U) () R.

Each cycle or path of G discussed in this paper
will be assigned an orientation. Let B be a cycle or
path of G, ix,y} C V(B), denote by B[x,y] the
oriented (x,y)-path of B (where the orientation was
taken from B), B(x,y] = Blx,y] - {x}, Blx,y)
= Blx,y] - {yl, and B(x,y) = Blx,y] - {«x,
yi.

1 The Basic Lemmas

In this section, we always assume that G is a
connected non-hamiltonian graph and C is a maximal
cycle of G (i.e., there is no cycle €’ in G, such that
V(C) c V(C')), and H is a component of G —
V(C). Assume also {v,,v,,", 0,1 c N¢(H) and
vy ,Vy,°" ", 0, occur on C in the order of their indices.
The subscriptions of v;’s will be taken modulo k. If x
€ V(C), denote by x* and x~ the successor and the
predecessor of x along the orientation of C,
respectively.

For each i € {1,2,---
v;,,) is called insertible'® , if there is some vertex w
€ Clv,, ,v;) such that {w,w" | C N(uw). Otherwise
u is called non-insertible.

Lemma 1Y Let u € C(v;,v;,,) for some i €
11,2,, k. If all C(v;,u) are

insertible, then u & N.(H). Therefore there exists a

ki, avertex u € C(v,,

vertices in

vertex in C(v,,v,,,), which is non-insertible.

By lemma 1, for each i € 11,2,-,k}, let x; be
the first non-insertible vertex in C(v,,v;,,) .

Lemma 2 O If u € N.(H), then u* &
NC<H);

@ If uw € Nx) N Clv, ,v;), then u*
&N (x;).

Lemma 3 For {i,j| ¢ (1,2, kl, if y, €
C(v;,x ],y € C(v;,x;], then

(D There is no (y,,y;)-path Q with all its
internal vertices not in V(C);

@ There is no w € Cly;,y,], such that {yaw,
yw't c E(G).

Lemma 4 If u € N, (H)\ {v,,0,, 0,1,

'
y ejL:JlC(vj,xj], then u* y & E(G).

In the remaining part of this paper, let Y = {y,,
¥is syt where yo € V(H), y, € C(u;,x,] for i

€ {1,2,+, ki. Denote J, =i@16[yi,vi+.], K, =
V(G)\ Jy.

Lemma 5 YV € [,,(6),K, ¢ S(V) U
SI(Y)9 KY ﬂ NO(Y) = fyo%.

A segment C[zl,zz)(g Cly, v, ]t € 11,2,
=+, ki) is called a CY-segment. If

@ C(zl’z2> N SO(Y) = @’;

@z € (YY) U Y,z € S(Y) U {o),f.

A CY-segment Clz,z,) is said to be simple if
C(Z1szz) C SI<Y)-

Lemma 6 Let Clz,,2),(c Cly,,v,.].t €
{1,2,--,k!) be a CY-segment. Then the following
results hold.

@ Let M; = N(y,) N C(z,2,),0i € {0,1,2,
- k1), then

M My s My My My s My M
(some of them may be empty) form consecutive
subpaths of C(z ,z,) which can have only their
M.

i

< 1

B

endvertices in common, and ‘Mo‘ < 1;
when y, = x,, and i € {1,2,-, ki \ {t}.

@ Let Z, = C(z,,2z) N S,(Y), Z, = C(z,
)\ Z, = {tw ,wy,,w,{(h = 0), and w, €

S, (Y)., Then

() [ 2]+ [ 2] = [Clz,2) |- 15

(b) If G be a claw-free graph, and there is y, €
Y\ iy}, suchthat C(z,,2z,) c S, (Y) U (S,(Y)N
N(yq)), then h = 1.

Proof By lemma 6 in Ref. [4], O and @(a)
hold. By lemmas 2, 3 and 4, and G be a claw-free
graph, (b) holds.

In the following lemmas, we always choose x, &
NH(vq) for some ¢ € 11,2, ki, let X = {xy,x,,
ouxt,and Y = (X )\ {x, ) U {v;}

q

Lemma 7> Y € 1\9(6).



186 Xu Xinping

Lemma 8°' Let G be a claw-free graph. Then

D S;(X) = @ fori € 12,3,,,k + 1} ,and
V(G) = Sy(X) U S (X);

@ S;(Y) = @ for i € {13,4,,k + 1}, and
V(G) = So(Y) U S, (V) U (S,(Y) N N(w,")).

We always assume that b is an integer (0 < b <
E+1), Y = {yyi s yoon ! (g Y) for i €
10,1,+, k!, the subscriptions of yj’s will be taken

modulo £ + 1.
Let U C V(G). We always set

6,(U,Y) = Z IN(Y) N U

a,(Y) = 0,(V(6),Y) = Z\N(Yi)\

By the definition of ¢,(Y), it is not difficult to
check that the following lemma holds.

Lemma9 O Ifw € S,(Y), theng,({w],Y)
= b;

@Ifwé€ S,(Y), then ab({w},Y) < 2b.

Lemma 10 O ¢,(K,,Y) < b(|K/| -1 -
UV N KD D

@ Let G be a claw-free graph, and Cl z ,zz](g
C[y,,vm]) is a CY-segment, then

6,(Clz,,2,),Y) < b| C[Zl7zz>|

Proof (D Bylemma5, K, C So(Y)U S, (Y),
and Ky, () No(Y) = %yo}. So by lemma 9D,

o, (Ky,Y) = b(| Ky | = [ Ky N (N(Y) U

N = TUMNM N KD <
bCLKy -1 - U)K
so (D holds.

@ If Clz,,2,) be a simple CY-segment, by
lemma 9Q),

0,(Clz,2),Y) = b| C(z,2)| =

b(| Clz,z)| - 1)

If Clz,z,) be non-simple CY-segment, by lemma
8®’C(zl’22) C S1(Y> U (Sz(Y) N N(U;)) By
lemma 6@2), when h = ‘Z2| = 1, thus by lemma 92,

6,(Clz,2,),Y) < bl Z/| +2b| Z,] =

b(‘Z1’+ ‘Z2‘+1) = b‘c[zlyz2)‘

so @ holds.

Lemma 11 Let G be a claw-free graph, then
o, (Y) < b(n(Y) - 1).

Proof We first prove two results.

(a) oy, (C[%,Uul],y) < b(|C[}’w”t+1J| -
‘ZLJZ(NZ(Y) N Cly,vaD]).

In fact, for t € {1,2,-,k}, partition

Clycoa IV U N O Clys o))
into s, CY-segments

Cla ,2i), Clzs  z)) 0, CLa 25

Thus by lemma 10®), we have

s
t

ab(C[yz ,'UH,|,Y:| = Zgb(c[z;;),zﬁ-é))’y) $

Jj=1
Z b‘ C[zj(lt)9z§21))| = b(| C[}’HUMN -

UMD N Clyona D))
so (a) holds.
(b) 0, (Jy. V) < by | = U N T ).

k
In fact, note that J, = L__J1C[yt,v,+l]. By (a),

we have
k

Ub(]y’Y) = Zdb(c[y,5vz+l:|7y) <

t=1

N o] lynall - [N NN

CI:}’HUMDD =
(|- TUNM N
so (b) holds.
Now we prove the lemma. Note that V(G) = J,
U K, . Thus by (b) and lemma 100,
o, (Y) = 6,(Jy,Y) + 0,(Ky,Y) <
b= TUWNM D) +
b Ky -1= UMD N K] =
b([ V)N UNM[-1) =
b(n(Y) - 1)

2 Proofs of the Theorems

Proof of theorem 1 By contradiction. Suppose
that G is non-hamiltonian. Since G is a k- connected
graph with £ = 2, we may choose a longest cycle C of
G, a component H of G — V(C) and {o,, 0y, 0 |
C N.(H). Suppose that v, ,v,,**, v, occur on C in
the order of their indices. By lemma 1, for each i &
11,2, k!, let x; be the first non-insertible vertex in
C(v,,v,,,). Set X = {xy,%,,",x,], where x, €
NH(vq) for some ¢ & 11,2, k}. By lemma 8D,
V(G) = So(X) U Si(X). Set ¥ = (X \ {x,{) U
{vit. Thus, Y € 1I'Y(G). For

convenience, denote Y = | Yos¥is™ s Vi b,

by lemma 7,

On the other hand, by lemma 11, we have

o, (Y) = D IN(Y) | < b(n(y) - 1)

=0
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a contradiction.

The following theorem will involve a graph G’
other than G. In order to distinguish the notations such
as N(U), N(X), Ky, S(X), n(X), o,(X)
introduced for G, we will simply add a prime to the
notations with respect to G’. For example, N (U),
N’J-(X), etc.

Proof of Theorem 2 By contradiction. Suppose
there exists w € V(G) such that ¢ = G - {w! is
non-hamiltonian. Since G is a (k + 1)-connected
graph with £ = 2, we may choose a longest cycle C of
G, a component H of G’ — V(C), and {v,,v,,",
v | C N’.(H). Suppose that v, ,v,,"**, v, occur on C
in the order of their indices. By lemma 1, for each i &
1,2, kl,
C(v;,v,,,). Set X = {x(,,xl o, x|, where x, €
N(wv,) for some ¢ € {1,2,*,k}. Obviously G is
also claw-free graphs. By Lemma 8D, V(G') =
SH(X)U S (X). Set Y = (X\ %xqf) U {v;} By
lemma7, Y€ I2,(G"). Note that ¢’ = G —

is easy to see that ¥ & Ii."’jl(G). For convenience,

let x; be the first non-insertible vertex in

fwl, it

denoteY = {yo,yl,"',yk}.

On the other hand, note that G is a claw-free
graph, w € So(Y) U S,(Y) U S,(Y). Set &€ = 0 if
w€ Sy (Y), e = 1ifw€E S,(Y) U S,(Y); so

RS RSB E FH FN T N E B I

n(Y)+ &<

have

5 (¥) = DN =

n(Y). Thus by lemmas 11 and 9D, we

SN

MV N | <

o/, (V) +2bE < b(n/ (V) - 1+26) <
b(n(Y) -=1+< &) < bn(Y)

a contradiction.
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