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Spin-Orbit Scattering Effects on Hall Conductivity

in a Layered Disordered Electron System”
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Abstract:  Spin-orbit scattering effects in a layered quasi-2D disordered electron system have been investigated by the
diagrammatic techniques in perturbation theory. The expression of Cooperon (propagator in particle-particle channel) is
obtained as the function of interlayer coupling. The analytical result for the quantum correction to Hall conductivity has been
obtained as functions of elastic, inelastic and spin-orbit scattering times. It is shown that the strong and weak couplings
correspond, respectively, to the 3D and 2D situations. The Hall coefficient is shown to vanish. The relevant dimensional
crossover behavior from 3D to 2D with decreasing the interlayer coupling has been discussed, and the condition for the
crossover has been obtained. The present theory is expected to apply for the electronic transport in tunneling superlattices.

Key words: layered system, weak-localization, Hall conductivity, spin-orbit scattering

Anderson localization of disordered electron systems by elastic scattering from static impurities has been a topic
of serious study for the last two decades''?! . According to the scaling theory of the pioneering work of Abrahams et

al™

. all electronic states in one- and two-dimensional (1D and 2D) disordered systems are localized irrespective of
the degree of randomness, while in three-dimensional(3D) systems there exist metal-insulator transitions due to
Anderson localization. In recent years, however, quasi-2D electron systems have attracted a great deal of attention
because of their unique physical properties. A positive magnetoresistance due to suppression of antilocalization in a
CdTe/Hg,_,Cd, Te superlattice has been studied experimentally by Moyle, Cheung and Ong“z . Szott, Jedrzejek and
Kirk have completed the measurements and made extended studies of negative magnetoresistance effects in a
GaAs/Al, Ga,_, As superlattice”’ . Another example of quasi-2D electron system is the layered high- T, cuprates. The
logarithmic increase of resistivity with decreasing temperature in a magnetic field suppressing superconductivity in

]

La,_ Sr, Cu04[6] and La-doped BiZSrZCuO7m , is attributed to weak-localization effects'® . These experimental

results provide a motive for theoretical investigation of weak-localization effects in quasi-2D disordered electron

sl Recently, Abrikosov calculated the quantum interference corrections in a quasi-2D metal to

systems
conductivity as a function of temperature and magnetic field ™', and discussed the dimensional crossover from 3D to
2D behavior with decreasing the interlayer hopping energy.

In this work, we will study theoretically the spin-orbit scattering effects on weak-localization in a layered
quasi-2D disordered electron system, which are not involved in above mentioned theoretical works.
Weak-localization is a quantum effect that results from constructive interference between closed electron paths and
their time-reversed counterparts. This constructive interference increases the probability of backscattering and
results in an increase in resistivity over the classical Drude value. In the presence of spin-orbit scatterings the
interference becomes suppressed due to the rotation of the electron spin'™’ . Therefore spin-orbit scatterings must
have very important influences on the transport properties of a quasi-2D system, as well as on the dimensional
crossover behavior from 3D to 2D. By means of the diagrammatic techniques in the perturbation theory, we will
calculate the Hall conductivity in a layered quasi-2D disordered electron system in the presence of spin-orbit
scatterings, and discuss the relevant dimensional crossover behavior from 3D to 2D with decreasing the interlayer
hopping energy.

In section 2, we will present the model for a layered quasi-2D disordered electron system, and calculate the
Boltzmann conductivities of this model. In the perturbation theory, the so-called Cooperon (particle-particle
propagator) is responsible for weak-localization effects, therefore we will, in section 3, derive the expression for

Cooperon in the presence of spin-orbit scatterings and calculate the weak-localization corrections to conductivities.
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In section 4, the Hall conductivity and its quantum correction will be evaluated, and the relevant dimensional

crossover behavior from 3D to 2D will be discussed. Finally, a brief summary is given in section 5.

1 The Model for a Layered Quasi-2D Disordered Electron System

The energy spectrum of a quasi-2D disordered electron system is given by
G = kZH 2m - tcos(k,a) (1)
where k| = (k,, k,) and k. are wave vectors along the planar and z directions respectively; m is the in-plane
effective mass; a is the period of the structure along z axis; ¢ is the interlayer hopping energy which is assumed to
be much smaller than the Fermi energy ;. It is easily shown that the Fermi surface of this model is a slightly
corrugated cylinder, the density of states per spin at the Fermi energy is N = m/2na, and the electron density is
given by n = k3/2ma with ky = mo, = V 2me, .
Let us consider spin-orbit scatterings. If an electron with spin & is scattered by a potential ud(r) from the
state k into the state k”, the Born amplitude of the scattering is given by ul1 + in(k x k") + 6] with 7 being a

small constant. The impurity-averaged retarded and advanced Green’s function for the conduction electrons are

given by
G(k,w) = (w - & = il27) (2)
where & = ¢ — o and t7' = ;' + ;' + 7o', with 7y, 7, and 7, being the elastic, inelastic and spin-orbit
scattering times respectively. Using the Born approximation, we have z,' = 27 Nnu® and 7' = Z (7)™ =2n
P

Nniu2 772 Z ((k x k' )i>F , where n; is the concentration of impurities and ((k x k' )i>F represents the average

over the Fermi surface' . The inelastic scattering time 7, depends on the temperature due to electron-electron or
electron-phonon interactions. In the weak — disorder regime, n; is assumed to be so small that ;' < 7, < 7, 7.

The diffusion constant and the mean free path along p direction are defined by D, = (v3),7 and [, =
(D, )" respectively, where <vi>F represents the mean-square velocity on the Fermi surface. Making use of the
dispersion relation (1), one can easily obtain D | = UZFZ'/Z and D, = t*a*7/2. The Boltzmann DC conductivities
can be easily calculated through the well-known Einstein relation o, = 26 ND, , yielding 6 = ne’r/m and o, =
e’ mat’ t/2x.

It is important to emphasize that both Boltzmann theory and weak-localization theory are correct within the
region that the quasiclassical approximation is valid, therefore we must distinguish two different cases: D 7' < ¢
< ¢, meaning [ | > A, (the Fermi wavelength) and [, > a, in this case the quasiclassical method is valid for all
directions; @ t < 7' < ¢, meaning [y > Arand [, < a, in this case the quasiclassical method is valid only for

the planar direction, with the wave functions of electrons being localized along z direction.

2 The Weak-Localization Corrections to the Conductivities

In a disordered electron system, the Cooperon re- 4~k q-kK q-k g-kK q-k g-k g-F
. . . . . . <_'_<_ -
sponsible for weak-localization effects is the particle-particle . . 2o 0 aa o
propagator which can be diagrammatically represented in E |
Fig.1.The dashed lines with crosses represent the = X >|<
impurity-averaged scattering amplitude. In the presence of : :
.p y. 8 . g P . . P B g B g B 1B B g
spin-orbit scatterings, this scattering amplitude can be ! !
expressed by Refs. [2,13] k K ko k k kK’
W w I = (2n NZ‘O)_I [ 8.Opp — 2 (gl )5:(1(;)/;3 ] Fig.1 The diagram for the Cooperon
(3)
where 6" (2 = x,y,2) are the Pauli matrices. The Cooperon is decided by the following equation
C(q7w>aa’,‘7 = Waa’,ﬁ@’ + K(q,w)EWml’@gl C(q,(l))ala’,,@]ﬂ/ (4)

@
where the kernel K(gq,w) is defined by
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K(q.0) = 236"(q - k,0) 6" (k,0) (5)
k
Now let us evaluate the expression for the kernel K(¢q,w) near the diffusion pole in a quasi-2D system. For small
q| » substituting Eqs. (1) and (2) into Eq.(5), we get
®© dS_H 21 d_@ ma dkl . ,
K(q,w) = mjiw o JO zn'ﬁm ZTL'[SH — tcos(k.a) + i/27]
(&) +q chos@ - tcos(ka + q.a) — w — il27] 7" =
21 d@ a
mTJO 2TfJ‘—"r/a 27[

In an anisotropic 3D system, the diffusion pole means wr < 1 and ¢,/, < 1[14] . However, for our quasi-2D model

lwt + iq | vpreosl + LZtZ'sm( 5 4 a)sin(k.a + %qza)]

with the Fermi surface being a slightly corrugated cylinder, the diffusion pole is of some unique feature, which

means wt, q| !, (2l./a) ‘ sin( qza/2) ‘ < 1. In this case, we have

K(q,0) ~ mfrﬂ d_@r/“ — 44 sin’ iq a)sin’ (ka + lqa)] =
o 21) . 2TE 2% : 2%
2 Nl 1 + iwr - ¢ 13 = (21/a)*sin’ (gq.a/2)] (6)
We expect that the expression for Cooperon has the similar structure with that of the scattering amplitude,
assuming
C(q, )y = 2uNe) " (40,85 + > B0kl ) (7)

where B, = B, = B . Substituting Eqgs.(3), (6) /and (7) into Eq. (4), we can calculate the values of A and B,,
and get
= (12)F (qg,w) + (1/4)F,(q,w) + (1/4)F,(q,w)
= (12)F (q,0) - (1/4)F,(q,w) - (1/4)F;(q,w)
By = (1/4)F,(q,w) - (1/4)F,(q,w)
where the functions F,(q,w) (I = 1,2,3) are defined by
F(q,w) = 1¢ 0 + (2L./a)sin’(q.al2) - iwt + A,]7" (8)
with A, = 7/7; +2r/rm +27ltl,, A, = tlt, +4‘r/‘rw , Ay = t/7;. Substituting the values of A and B, into Eq.
(7), we obtain
LC(q,w)aﬂﬁa = (2nNe) ' [2F (q,w) + F,(q,0) - F;(q,0)] (9)

a4 < 1 Eq. (8) changes as the exact result in an anisotropic 3D system
Fl(q,w) = (quH +qzlz—La)‘L'+/\l) - (10)

According to the Kubo formula, within the quasiclassical approximation, the weak-localization correction to the

if | q.

conductivity along y direction is given by Ref.[2]
= (&'2) D v, (k) v, (g - k) 6" (k, ) G (k,0)6" (g - k,0)G' (g - k,0) >C(q,w) 5 (11)
kq o}

where w is the frequency of the applied field, and v,(k) = d¢/dk, is the velocity for the electron along y
direction. In the case of wr <« 1, the main contribution of Eq. (11) arises from lygy < 1 and
(2l./a) | sin (qza/Z) | < 1, therefore one can easily perform the integration over k, obtaining

oo, lo, = - TZZ ZC(q,w)mg,ﬁa (12)
q of

In the following evaluations, we will consider only the DC conductivity, setting w = 0.
3 The Hall Conductivity and Its Quantum Correction

Let us consider an external magnetic field perpendicular to the layers, which is described by the vector
potential A(r) = Ae” " with p and A along x and y directions repectively. Then the magnetic field is given by H
= ip A. We assume that the field is weak enough so that w,7 <1 with w, = eH/mc being the cyclotron frequency.

5" to the quasi-2D system with spin-orbit scatterings.

We shall generalize the diagrammatic method in a 2D system
The Hall current is the current response that is linear in the electric field and the magnetic field. The Hall

conductivity can be calculated by the diagrams in Fig.2, where the inserted lines with arrows represent the magnetic
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field vertexes. In the quasiclassical approximation, the contri- L4 ‘
butions of diagrams (a) and (b) to the Hall conductivity can be k+p k »
expressed by r
3
a e .
I = ncmSZk](k? + 2py)kk - AC (k4 * k-p k
p) G (k)G (k) (13) @ ®
b _ 1 . A _ Fig.2 The diagrams for the conductivity
Oy = - cm Z (k Zp,)kxk AG (k
p)G (k)G (k) (14)

where G (k) = G*(k,0). Summing Eqs. (13) and (14), and using the relation ' (k+p)~G"(k)+p-
v(k) G (k)? for small p, one obtains

3
o= i SN VRRE ) 6 (L6 (k) = 6*(k)*] =
T cm” ’

“’357142% G (k)G ()L G (k) — G (k)] (15)

Substituting Eq. (2) into Eq. (15), and using the relation kz‘ =k (1+ € | /¢p), we can complete the intergration
over k and obtain

0, = W0 (16)

The quantum correction to Hall conductivity can be evaluated by meaning of the diagrams shown in Fig.3. The

contributions of these diagrams to the Hall conductivity can be expressed as

4
\pk q-k k 9-k q-k k+Pf q-k+p

(a) (b) (o)

Fig.3 The diagrams for the quantum

ooy, = o cm32’2‘(k + 2p})(qx E)k - A x
cR<k+p>cR(q—k>G’*<k>GA<q—k>G“<k>C<q,0>as.ﬂa
b 1 .
So), = 2mm3% %(k 70 )(q =k )k - A x

Gk -p)G'(qg-k)G (k)G (qg-k)G(k)C(q,0) 5

2ncm322(px )»—%p_,,)kxk'Ax
GR(k+p)GR(q k)G (k)G'(q -k - p)G'(k)C(q,0),,

20> (g, -k, + 2p})kk A x

211 em’ i
G'(k-p)G'(qg-k)G (k)G (g -k +p)G(k)C(g,0),,

Summing the above equations for small p, and noting that the main contribution arises from the diffusion pole,

c
oo,

So’ =

hid

we get

b0, = — i< H422k RGH (k)L G (k)G (k)* - G*(k)*1C(q.0),., (17)

T m Ty T

Substituting Eq. (2) into Eq.(17), we can complete the integration over k and obtain
8o, = -2w,a) >, >,C(q,0), (18)
¢ B

It is interesting to discuss the dimensional crossover behavior in the Hall conductivity. In the case of 7' < ¢
< ¢, the main contribution of Eq. (18) arises from ¢ /| < 1 and [,q. << 1. Substituting Egs. (9) and (10) into
Eq.(18), and replacing the summation over g by the integral
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[—1

N ;
(27) BJO 21t g dq j_ﬂ dq.
we obtain

S L 220y Xy SR - V)] (19)

(1,

o B Tt'z plt
2l In the case of ¢ <7 <«
< m/a. Substituting Eqs. (8) and (9) into

The square-root behavior in above equation is the typical feature of a 3D system

¢+, the main contribution of Eq. (18) arises from lyq) <1 and ‘ q.
Eq.(18), and replacing the summation over g by the integral

a

!
(271)'3JOH 2rq [ dq” dg.

-m/a

one gets

do,, w

% _ 7«1“( [ 72 t;) (20)
o e\ N 2
where 7, = 1 + )t,/tz =+ (1 + )t,/tz ) -1 (1 =1,2,3). If the interlayer coupling is small enough so that ¢
</ Aj/T, meaning 7, =~ 2/11/t2 %, Eq.(20) changes as
90, _ @ Az)
o | - Ttél.'ln( Al /1_3 (21)

The logarithmic behavior in above equation is the typical feature of a 2D system. Therefore, Eqs.(19) — (21) show

apparently a dimensional crossover from 3D to 2D with decreasing the interlayer hopping energy ¢ .

The Hall coefficient is defined by R = — am/(azu H), then its quantum correction can be calculated as
oo, O
OR _ 9o, 00| (22)
R o o

Substituting Egs. (12), (16) and (18) into Eq. (22), one obtains 8§ R = 0. Therefore the quantum interference
effects have a vanishing correction to the Hall coefficient. This result is consistent with that of a purely 2D

system 15) .

4 Conclusion

In this paper, making use of the diagrammatic techniques in the perturbation theory, we have calculated the
weak-localization correction to the Hall conductivity in a layered quasi-2D disordered electron system with spin-orbit
scatterings. We show that the spin-orbit scattering time (included in a parameters A,;, A, and A;) has very

important influences on the dimensional crossover in the Hall conductivity. The condition ¢ = 7~ corresponds to a
3D situation. In the case of t <=+/ A,/z(l = 1,2,3), the Hall conductivity is exactly the same as in an isotropic 2D

system. It is apparent that the relevant dimensional crossover occurs at the region of v/ A,/ < t < 7' (1 = 1,2,
3). However, the Hall coefficient has a vanishing quantum correction provided that the condition < & 18

satisfied.
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