Journal of Southeast University (English Edition) Sept.

2002 Vol.18 No.3 ISSN 1003—7985

On the Julia Sets of Permutable Transcendental Entire Functions

Zhu Lingmei'”

Yang Degui’

Wang Xiaoling'”

(' Department of Applied Mathematics, Nanjing University of Economics, Nanjing 210003, China)
(ZCOHege of Sciences, South China Agricultural University, Guangzhou 510642, China)
(* Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China)

Abstract:

Let f and g be two permutable transcendental entire functions. In this paper, we first prove that J(f°g) = J

(f"og") for any positive integers n and m. Then we prove that the function h(p(z)) + az & B, where h(z) is any

transcendental entire function with i’ (z) = 0 having infinitely many solutions, p(z) is a polynomial with deg p = 2 and

a( 0) € C.
Key words:

1 Introduction and Main Results

Let f(z) be a transcendental entire function, and
denote by f*, n €N, the n-th iterate of f. The set of
normality, F(f), is defined to be the set of points, z&
C,such that the sequence {f"| is normal in some neigh-
bourhood of z, and J= J(f) =C- F(f). F(f) and J
(f) are called the Fatou set and Julia set of f, respec-
tively. Clearly F(f) is open, while by the results of Fatou
and Julia, J(f) is a nonempty perfect set which coin-
cides with C, or is nowhere dense in C. For the basic re-
sults in the dynamical system theory of transcendental
functions we refer to Refs.[1-3].

Let f be a transcendental entire function, a &€ C.
If there exists a polynomial p(z) and a nonconstant
entire function h(z) such that f(z) = p(z)ehm + a,
then we call a to be a big Picard exceptional value of
f, and we denote the set of all such values by
PV" (f). Furthermore, ifp(z) = (z - a)" for some
integer £ = 0, then a is said to be a Fatou exceptional
value of f. In particular, if & = 0, then a is a Picard
of f. We denote the
exceptional values and the Picard exceptional values of
f by FV(f) and PV (f), respectively. By Picard
theorem, each of the three sets above contains at most
one point. Obviously, PV(f) c FV(f) c PV" (f).

For two permutable transcendental entire functions
fand g, we have PV(f° g) = PV(f) U PV(g). In
fact, if PV(f° g) contains a point x and x & PV(f),
then there exists a point z, such that f(z,) = x. Note

exceptional value Fatou

that f o g(z) = « for any z € C, thus g(z) = z,,
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i.e., zp € PV(g) c PV' (g). Since f(g) = g(f),
from x € PV(g ° f) we get that x € PV" (g). Thus
%, 20 € PV (g). Since PV" (g) contains at most one
element, we have z, = x, and x € PV(g). Thus
PV(f - g) c PV(f) U PV(g). The converse is
obvious.

Let f and g be two nonconstant meromorphic
functions. If f(g) = g(f), then we call f and g
permutable.

Fatou* proved the following results.

Theorem 1 For two given rational functions R,
and R,, if they are permutable,then F(R,) =
F(R,).

The following question is natural (see Ref.[5]).

Question 1 For two given permutable trans-
cendental entire functions f and g, does it follow that
F(f) = F(g)?

In some special cases, this question was
affirmatively solved.

Theorem 2 let f and g be two permutable
transcendental entire functions of finite order. Suppose

that

f(z)

Po(z) + P1<Z)eq'<1)
and

f(2) = po(2) + pi(2)e"” + py(2)en"”
here ¢;(z)(i = 1, 2) and p;(2)(i = 0,1,2) are
polynomials, p,(z) is a non-constant polynomial.
Then J(f) = J(g).

Theorem 3 If f and g are two permutable
transcendental entire functions, and there exists a

non-constant polynomial @ (x,y) in both x and y such
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that @(f(z), g(z)) =0, then J(f) = J(g).

Many other authors studied the dynamical
properties of two permutable transcendental entire
functions, see Refs. [5 - 9]. Firstly, we prove the
following theorems.

Theorem 4 ILet f and g be two permutable
transcendental entire functions. Then

J(fog) =T - g")

A point a is called a singular value if it is either a

Vm,n =1

critical value or an asymptotic value. We denote the set
of all finite singular values of f by sing(f™'). If the set
sing(f') is bounded, then we say f is of bounded
type, in particular, if the set sing(f™') is finite, then
fis called to be of finite type. We denote them by f &
B and f € S, respectively' ™ .

If a transcendental entire function f € B, then f

has many fine dynamical properties[l‘3"‘)]

. For any
given transcendental entire function f, to determine
whether f &€ B or not is a difficult problem, and there
exists no useful way to do so. But in what follows, we
can prove the following results.

Theorem 5 Let h(z) be a transcendental entire
function with h’(z) = 0 having infinitely many
solutions, p(z) be a polynomial with deg p = 2, and
a(#£0) € C. If f(z) = h(p(2)) + az, then f(z)
¢B.

Theorem 6 Let f be a transcendental entire

function. If there exists a sequence {z,|._, and a

positive number M > 0 such that lim|z,| = o3

GO MG < M.
Then for any non-constant polynomial q(z) , we

have f(z) + q(z) &B.
2 Some Lemmas

Lemma 1" Let f be a transcendental entire

function. Then
SHFE)) = F() = f(F(N) U PV N FONHI
S = I = UG U APV N IO
Lemma 2 Let f and g be two permutable
transcendental entire functions. Then g(](f)) C
J(f) and f(J(g)) c J(g).
Lemma 3 let f; and f, be two permutable
transcendental entire functions. Then

F(fi» f) c F(f) N F(A) (1)

Proof Since f, and f, are permutable, we have
fie ilh) = fi(h) o fi
Lo ilh) = fi(fa) o fa

It follows from lemma 2 that

LU LU c JUAUL)
(2)
This and lemma 1 imply that
](fl(fz)) = fi °fz<](f1(fz)>) U %PV(ﬁ(fz)) N
](fl(fz))} = fz °f1<](f1(f2))) U
%Pv(fl(fz)) ﬂ ](fl(fz))% C
L)) UAPVA(S) N
TN € JUAL)
Thus
LGS UIPVUA L) N TG =
J(f () (3)

Similarly we have

LGN UIPVAL)D N IARGEDT =

J(f () (4)
Next we shall prove
S UG = JUAR)) (5)
and
UG = TR (6)

In fact, for any « € £ '(J(fi(f,))), i.e.,
frla) € J(A(£)), by (2) we deduce that
fl(fz(a)) & ](fl(fz)) Applying lemma 1 to the
function f, (f,) we obtain @ & J(f,(f,)). Hence

LA ¢ TR A)

The converse follows from (3). Thus (5) holds.
Eq. (6) can be similarly proved. It follows from (3) -
(6) that

f271<F(f1(f2)>) = F(fl(fz)) =

LCFCA ) UAPV(L) N FALDE ()

In fact, if b & F (f,(f,)) \ PV (f,), then there
exists ¢ € C such that f,(¢) = b. From (3) we see
that ¢ € F(f,(f;)), and so b € fL,(F(f,(f;))).
Thus

F(fl(fz)) sz(F(fl(fz))) U

PV N FOA L))

All other relations can be similarly proved.

Similarly we have

fl_l(F(fl(fz))) = F(fl(fz)) =

FCECAAE) U APV N FA LD (8)

It follows from (7) and (8) that, for any positive

integer k,
F(fl(fz)) = fzk(F<f1<f2>)) U
UL A VL)) N FAAD (9)
and
F(fl(fz)) = flk(F(fl(f2)>> U
TULo A (PV(AL)) N FCA (D) (10)

In fact, to prove (9), we only need to prove that

F(fi(£) c i (F(f(A) U
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HULB(PV(L)) N FCA A (11)

The converse follows from (7). Let

a 6 F(fl(fZ)) \ Uj];ofzj(PV(fz))

Then by (7), a € £,(F(f,(f,))). Thus there
exists a point y, € F(f;(f,)) such that a = f,(y,).
Note that

yi € F(fl(fz)) \ Uj 0 2<F(f1(f2))
there exists a point y, € F(f,(f,)) such that ¥y =
£(y,), and so, a = fzz(yz). By induction, there
exists a point y, € F(f,(f,)) such that a =
ka(F(f1 (£2))), and so, (11) holds. This proves (9).
The proof of (10) is the same.

Combining (9), (10) and Montel’s theorem, ?le”%
and {7} are normal in F(f,(f,)). We thus get (1).

Lemma 4 Let f be a transcendental entire

1. Then we have F(f) = F(f").

function, n =

=

Lemma 57 Let f be a transcendental
meromorphic function and f € B. Then, for any n =

1, there exists K, > 0 such that, if |z| > K, and
()] > K,

(Y ()] 5 L) el 1)

16| z |

3 Proof of Theorem 4

For two given positive integers n and m, we shall
prove that
F(fog)=F(f-g") (12)
Let ¢ > max{n,m}. From lemma 4 we get
F(feog)=FUfeg)) (13)
Now by fo g = g ° f, we have
(feg) =g e (ffeg") =
(freg)e (S g™
Applying lemma 3 to f; = f" o g"and f, = f7" o g'™"
we get
F((feg)) c F(ffeg") (14)
Similarly, we have
[rogt = (feg)e (ffT g =
(S e g e (feg)
Applying lemma 3 to f, = fe gand f, = "' o g"" we
get
F(f'eg") c F(f-g)
Combining this, (13) and (14), we get (12).

The proof is complete.

4 Proofs of Theorems 5 and 6

Suppose that f(z) € B,
and let n = deg p. Let {w, |, be the infinitely many

Proof of Theorem 5
solutions of A’ (w) = 0, according to the assumption of

the theorem, such that 0 < |w1‘ < |w2| < <

&5

lw,| < =+ > © as k > o. If we choose R
suffciently large, then there exist two branches a, (w)
and a,(w) of the inverse function p~' of p which are
defined for | w| > R and |arg w| <  satisfying the

property that

2ni 1

(11<’M)) ~ Uw” and az(w) ~ genn

as ‘ w ‘ — o, here ¢ is a constant and w; denotes the
principal branch of the n-th root.
Now for any k = 1, we choose two roots z) , z) of

p(z) = w, such that
1 2 1

2 ~ own and z}, ~ genwn (15)
Then
Z) — o and z, > ® as k —> o (16)
£z = K (p())p'(£h) + a =
W (w)p' () +a = a (17)
F(z) = K (p(z))p (z) +a =
h’(wk)p'(zlk)+a = a (18)
f(25) = h(p(2))) + az) = h(w,) +
azy ~ h(w,) + aﬁwé (19)
F(z) = h(p(z)) + azyp = h(w,) +
azy ~ h(w,) + ader wp (20)

f(z(,)( —f(z,r) = aé\w,ﬁ(l - eT) (21)
as k — o . Two cases are to be considered.
Case 1 {f(z))|r., is bounded.
Then by (21) we have
f(zk)~—a5w (l—e")»ooaskﬁm> (22)
Now from (15), (18), (22) and lemma 5, we derive
that,

lal = |G| 5 M) L loel D]

16n|zk‘
‘a@w (1- e" )| log‘ aawk (1- 62:’”)‘
167t|z,(‘
as k — o . Then
|16Tta| ‘ZH ~ ‘167((1811}% =

2mi

|a8w (l—e" )‘ log‘aé\w (1-en)]
as k — o, a contradiction.

Case2 {f(z})]7., is unbounded.

Then there exists a subsequence of {f(z))|}_,
which tends to infinite. For the sake of convenience,
we still denote the subsequence as {f( z(z. ) w_i. Thus
by lemma 5 and (17), we have

ol = ()] 5 LD o 7D |

167T| z(H
this and (16) yield
D)= o(] 20 ])
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as k — o, by (15), we know that ‘f(za)‘ =
o | w,"|) as k — o . Then from this and (21), we
obtain that

2mi

f(z) ~ = adw," (1 - en ) (23)
Now by a similar argument as above, we can also
deduce a contradiction. Therefore the theorem follows.
Proof of Theorem 6  Suppose that f(z) + ¢(z)
€ B. Let g(z) = f(2) + q(z), then g(z,) = f(z,)
+ ¢q(z,) and g'(z,) f(z) + ¢(z). Thus
e Gol< IFGI+ G <M+ gD,
lg(z) | = [q(z) |- M and lim | g(z,) | =

by the above three inequalities and lemma 5, we

o . So

deduce that, for suffciently large n,

M+ lqd ()= 18] =
lg(z)]- log|g(zn>|
16m]| z, |
(1q(z)] - M) - log( \ q(z,)] - M)
167 z, |
This is obviously a contradiction. Therefore f(z) +
q(z) €B.
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