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Abstract :

In this paper, we study the normality of a family of analytic functions and prove the following theorem. Let .7

be a family of analytic functions in a domain D, k be a positive integer and a(z), a;(z), a,(z),, a,(z) be analytic

in D such that a(z) = 0. If f(z) % 0 and the zeros off“”)(z) + a&z)f“"”(z) + o

+ a,(2)f(z) — a(z) are of

multiplicity at least 2 for each f € .%, then .7 is normal in D. This result improves Miranda’s normal criterion.
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In the theory of normal families of meromorphic
functions, it is an important subject searching for new

.13
normal criterion’ "’ .

In this paper we study the
normality of a family of analytic functions. In the
following we shall use the usual notations and basic
knowledge of normal families*™® .

In Ref.[7], Montel proposed the following con-
jecture.

Montel’s Conjecture let .7 be a family of
analytic functions in a domain D. If, for any f € .7,
f(z) 20, f'(z) £ 1, then .7 is normal in D.

Miranda™® confirmed the conjecture by proving the
following theorems.

Theorem 1 Let .7 be a family of analytic
functions in a domain D, k be a positive integer. If,
forany f € .7, f(z) %0, f“‘)(z) # 1, then .7 is
normal in D.

Valiron and Chuang extended theorem 1 by
proving theorem 2"’ .

Theorem 2 let .7 be a family of analytic
functions in a domain D, k be a positive integer,
a(z),a,(z),a,(z),**,a,(z) be analytic functions
in the domain D such that a(z) = 0. If, for any f €
T f(2) 20, fP(2) 4 a; ()" (2) + ay(2) /47 (2)
+ -+ a,(2)f(z) %« a(z), then.7 is normal in D.
[10]

Hiong and He ™ improved theorem 1 as follows.

Theorem 3 Let .7 be a family of analytic
functions in a domain D, k be a positive integer. If
f(z) = 0 and the zeros of f"(z) - 1 are of
multiplicity at least 2 for each f € .7, then .7 is
normal in D.

Drasin also extended and improved theorem 1 by
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entire function, analytic function, normality, differential polynomial

proving theorem 4o,

Theorem 4 Let .7 be a family of analytic
functions in a domain D, k be a positive integer and
a,(z), a,(z), -+, a,(z) be analytic in D. If f(z)
# 0 and the zeros offk)(z) + al(z)fk_])(z) + ot 4
a,(z)f(z) = 1 are of multiplicity at least k& + 2 for
each f € .7 then.” is normal in D.

In this note we improve above results by proving
theorem 5.

Theorem 5 let .7 be a family of analytic
functions in a domain D, k be a positive integer and
a(z), a,(z), a,(z), -, a,(z) be analytic in D
such that a(z) = 0. If f(z) s 0 and the zeros of
f<k>(z) + al(z)fk_])(z) + o+ a,(2)f(z2) - a(z)
are of multiplicity at least 2 for each f & .7, then.7 is

normal in D.
1 Some Lemmas

For the proof of theorem 5, we need the following
lemmas.

Lemma 1"

Let .77 possess the property that
every function f € . has only zeros of multiplicity at
least k£. If.% is not normal at point z,, then for0 < a
< k, there exists a sequence of functions f, € .7, a
sequence of complex numbers z, — z, and a sequence
of positive numbers p, — 0, such that p,f, (z, + p,{)
converges locally uniformly to a non-constant function
g(¢) onC.
Lemma 2 Let f(z) be an entire function, k be

a positive integer, and d be a nonzero finite complex

number. If f(z) - 0 and the zeros of /' (z) - d are

% The project supported by the National Natural Science Foundation of China (10071038) and the National Science Foundation Educational Department of

Jiangsu Province( OOKJB110004) .

#% Born in 1957, female, associate professor.



On Miranda’s Normal Criterion 275

of multiplicity at least 2, then f(z) is a constant.
Proof Suppose that f(z) is a transcendental
Milloux’ s

Nevanlinna’s first fundamental theorem*™® and the

entire function, then by inequality,

condition of the lemma, we have

T(r.f) < N(r,f) + N(r,%)+

N(r’fﬁ) _ N(r,jﬁ) + S(r,f) <

=l

(r,fk)il_d) +S(r,f) <
N( r,fﬁ) + S(r,f) <

1
2
Tr(rd ) st
2 ’f{k)_d"" r, =
1

LT Y =)+ S(rf) < S T(rf) + S(r.f)
Thus we obtain T(r,f) = S(r,f), a contradic-

tion.
Hence f(z) is polynomial. Considering f(z) =
0, we deduce that f(z) is a constant. Thus lemma 2 is

proved.

2 Proof of Theorem 5

We assume that D = {z: |z| < 1} is the unit
disc. In the following we prove that .7 is normal at z,
for any zy € D. Now we consider two cases.

Case 1 a(z,) s 0. Suppose that .7 is not
normal at zy € D. Then taking @ = k(< %) and
according to lemma 1, there exists a sequence of
complex numbers z, — z,, a sequence of functions
f.(z) € 7, a sequence of positive numbers p, — 0
such that

2.(&) = p (2, + p,6) > g(&)
uniformly on any compact subset of C, where g( &)isa
non-constant entire function.

Considering f, (z) € .7 and f, = 0,we deduce
by the Hurwitz’s theorem that g(&) =« 0.

If g(k) (&) - a(z,) =« 0, then by lemma 2 we get
g(€) is a constant. This is impossible. So there exists
a point &, such that

g (&) —alz) =0 (1)

For any R > 0, we know that gff) (&) are analytic
on D, = {é&: ‘5— fo‘ < Rl fori = 1, ,k and
sufficiently large n. It follows by simple computing
that

2. (&) - alz, + p€) =

Mz, 4 0.8) - alz, +0,8) =
£z + p.8) + M(S, (2, + 0,6)) -

alz, + 0,8 ) = M(f,(z, + p,8)) (2)
where M(f,(z, + p,&)) = 2 a,_;(z, + p.E )7 (2,

k-1

+0,8) = E a,_i(z, + 0.8) 077 g, W(e) converges to

7=0
zero uniformly on Dy .

Clearly, L, (&) = g, (&) + M(f,(z, + p,6)) -
a(z, + p,&) = 0 have solutions with multiplicity at
least 2 on D, . Combining the Hurwitz’s theorem and
(2), we deduce that L,(&) converges to g<k)(§> -
a(z,) and the zeros of g“’)(f) — a(z,) are of
multiplicity at least 2 on Dy . Let R —> %, we get that
g(€) % 0, and the zeros of g(k)(f) - a(z,) are of
multiplicity at least 2 on C. Thus by lemma 2 we know
that g( &) is a constant, which is a contradiction.
Hence . is normal at z,.

Case 2

we assume that z, = 0.Hence there exists 7(0 < r <

a(zy) = 0. Without loss of generality

1) such that a(z) = 0 in {0 < | 2| < ri. Thus for
any f,(z) € .7, we know {f,(z)} is normal in C, =
lz:e 1z = r! by former conclusion. Thus there exists

a subsequence f,,k such that

fo () > g(2)
uniformly on C, .
If g(z) = o, then g(z) is analytic on C,.

Hence there exists an integer N and a positive number

M such that
f;lk (Z) ‘ g M

forall £ = N,z & C,. By maximum modulus theorem,

we have
f;lk<z)‘ g M

forall k= N, | z|< r. Hence {f,,k(z)} is normal in

{z: | z I< ri by Montel’s criterion*® . Thus there

exists a subsequence of f,,k (z) (we also denote them by
f,,k (z)) such that
fnk(Z)—’g(z) (3)

uniformly on {z: | z | < r}.
If g(z) = o, then for any positive M there

exists an integer NV such that
LD =M
forall £k = N, z € C,. Thus
£, (D] =M >0
forall £ = N, z& C,. Noting that f"k (z) has no zeros

ini{z: | z l< ri, we know

fnk(z)‘ =M
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forall £ = N, | z | < r by the minimum modular

theorem. This means that

£ (o) > (4)
uniformly on lz: 1z < r}. Thus we deduce from (3)
and (4) that.# is normal at z, = 0. Hence we deduce
that .7 is normal at z,, that is .% 1is normal in D.

Thus the proof of theorem 5 is complete.
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