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Abstract :

Based on the Lagrange’s equation and the finite element method, this paper establishes the dynamic equation

of a radar antenna mechanic system which is a high accuracy system and consists of two flexible bodies. Mode coordinates

are used to reduce the orders of equation. Finally, the calculation method and engineering example are given when the

rotational velocity of antenna is invariable and the wind velocity is 257m/s. The error of antenna mechanic system can be

estimated using the calculation results.
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The measurement precision of radar is deeply
influenced by the stiffness of antenna mechanic
system, especially to the three dimensional radar which
is a high accuracy system. In the typical calculation
model of antenna mechanic system, the radar antenna
and the antenna pedestal is calculated as an integrated
structure, the rigid body degree between antenna and
antenna pedestal is neglected. So it is not accurate
enough to use the typical calculation model to calculate
antenna mechanic error and antenna traction torque. In
this paper, the dynamic equation of a radar antenna
mechanic system which consists of two flexible bodies
is established based on the Lagrange’s equation and
the finite element method, the rigid body degree
between antenna and antenna pedestal has not been
neglected. Mode coordinate is used to reduce the
orders of equation. Finally, the calculation method and
engineering example are given when the angular

velocity of antenna is invariable.

1 The Dynamic Equation of Radar Antenna
Mechanic System

Fig.1 is the antenna mechanic system model. In
general, we assume that the deformation of antenna is
small enough, the damp of antenna can be neglected,
and the foundation of antenna is stiffness enough. The
antenna and the antenna pedestal are jointed by hinge
with one rigid body degree. The coordinate frame
X°Y'Z° is fixed at antenna pedestal. It is an
Earth-fixed frame, where the vertical direction is given
in Z°. The coordinate frame X'Y'Z' is fixed at
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antenna, the coordinate origin is in hinge axis. The
antenna and the antenna pedestal can be calculated
separately using finite element method (FEM), and the
FEM node displacements of the antenna and the
antenna pedestal are used as augmented coordinates.
So we have augmented coordinates ¢ = [ 0 a° a'l”,
where 0 is the rotation angle vector of antenna, a’ is
the displacement matrix of antenna pedestal FEM nodes
in XY’ Z°, a' is the displacement matrix of antenna

FEM nodes in X' V' Z'.

Antenna

Antenna pedestal

X0

Fig.1 The model of radar antenna system
Using the augmented coordinates ¢ = [0 a°
a'l”, the kinetic energy and the potential energy of

antenna pedestal can be written as

V= %qTI?(’q—qTQO (1)

T° = %q.']‘l\iloé (2)
In Earth-fixed frame X°Y°Z°, the displacement
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vector of node i in element e of the antenna shown in
Fig.1 is aieo =R, +r + al-le , where r; is the position
vector of FEM node i in frame X'Y'Z', aile is the
displacement vector of FEM node i in frame X'Y' Z'.

The Veloclty vector of FEM node i in frame X°Y°Z° is

'’ = RO +0 x 1+ a!‘. Using the augmented
coordinates, the potential energy of antenna can be

written as

2 Ve = 24'K'q -

L

Z(re)T(Ae)TQle _ qTQl <3)

e=1
where L, is the FEM element total number of antenna,
the third term and the second term in Eq.(3) right
hand side are the potential energy of external force
(include external torque); r° is the position vector
matrix of element nodes; A° is the transform matrix (it
is the function of @) . It transforms the position and the
displacement of FEM nodes in X'Y'Z' into the
Earth-fixed frame X°Y°Z°.

The kinetic energy of antenna in the Earth-fixed

frame X° Y’ Z° can be written as

Tlc() — %(a-le())'l'Mledl(’,O

M" =J oN'NAV
Ve

where N is the interpolation function. Using the
augmented coordinates, the potential energy of antenna

in the Earth- fixed frame X°Y° Z° can be written as

L - 2§ (4)

Using Eq. 1) - Eq. (4), the total kinetic energy
and the total potential energy of antenna and antenna
V=V +V.
I(T - V))

aq,

pedestal can be written as T = T° + T',
According to Lagrange’s equation E(

(T -V)
a4,
differential equation

= 0, we can deduce a 2n orders nonlinear

(M, M, M,]ré

My, M, M,|| d|+
LM, My M, Iba
[OM, My M,

dt dt dt 0
E)Mg(l aM()() aM()l <0
Ji Ji It al -
(’)M’;"l aMg] aM]]

L Jd¢ dt Jdr 4

_%é‘f’%‘é 0 0 076
0 +/0 K° 0| a|=
| 0 o K'ld
] ) L
0, + ML) + ()1 A7) g
0 (5)
L 0'

Compared with r°, the deformation displacement

a' is very small and can be neglected. So the right side

(aAe T

L]
. . . e\ T ‘A le
of Eq.(5) can be written as Q, + ; (r) 20 ) o,

where Q) is antenna traction torque.

2 Modal Reduction and the Calculation
Method

In general, the rotational velocity of antenna is

required invariable. It means 0 = 0, Eq. (5) can be

written as
M, M,
[Moo M01][ii0] dt dt [do]
. + . +
Mél M, i' aMél IM,, a'
dt dt
IM;,
K 0 . dt
A 51 I ol IO R
a 0, IM,,
di

It can be abbreviated as
MA + CA + KA = F (6b)
where K is constant matrix. The antenna traction

torque can be written as

0, = [ M, 1”91][ ] [aMw ngeo 93{61].
0 0
of-ae s il
a a
LI‘ IA° T
%{(re)T(ﬁ) 0" 7)

The Eq.(5) is established using FEM, so the
order of Eq.(6b) is very large. It is too much calcu-
lation work to solve Eq. (6b) directly. But the modal
function of antenna and antenna pedestal can be
calculated firstly using FEM, then the order of
Eq.(6b) can be

reduced greatly using mode

¢ 0
0o ¢

is modal coordinate, Eq.(6b) can be written as

0 XU
coordinate. [al] = [ [ 1] = ¢X, where X
a X
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P'MPX + ' COX + ¢'KOX = ¢'F  (8)

The order of Eq. (8) is small enough to be
calculated.

One period of antenna rotation can be divided into
n intervals and every interval is very equal. In every
interval, the change of 0 is very small and can be
neglected, 6@ can be treated as a constant. In arbitrary

mth interval, the derivative

IM _ [M(mAB) - M((m - 1)A6)]

dt At
IM [ M(mAG) - M((m - 1)A6)]
a0 - A6

The external force Fcan also be treated using this
method in arbitrary mth interval. Thus Eq. (6b) is a
linear differential equation in every interval, it can be
solved easily. The process of solution is as follows.

First, X, and XO are set to zero in 0 degree of
antenna rotation angle, they are the initial value of
interval 1th. Matrix M,C,K,F can be established
using FEM, the value X, ,X, ,X] can be calculated in
interval 1th.

Second, X, and Xl are set to the initial value of
interval 2th. Matrix M, C,F should be built over
again and the value X, ,XZ,XZ can be calculated in
interval 2th.

Third, X, and Xz are set to the initial value of
interval 3th. Matrix M, C,F should be built over
again and the value X; ,X3 ,)"(3 can be calculated in
interval 2th.

The last step, X,_; and X,H are set to the initial
value of interval nth. Matrix M, C, F should be built
over again and the value X, ,Xn ,X'n can be calculated
in interval nth. XH,X,L,X,I are on the 0 degree of
antenna rotation angle.

Compare X, ,XO with X, X" , if the error between
XO,XO and X, ,X,l is too big, substitute X, ,X,, for
X, ,XO, come back to the first step, calculate again,
till the error is small enough.

According to X, ,X,, the antenna traction torque

can be calculated using Eq. (7).
3 Example

Fig.2 is a radar antenna system. lts rotation per
minute is six circles. We assume that wind speed is
207m/s, and the wind direction is invariable. Now we
calculate the antenna traction torque and the displace-
ment of point A in antenna when the antenna rotation

per minute is kept on six circles.

Firstly one period of antenna rotation is divided
into 360 intervals and every interval is equal. In every
interval, the mass matrix, stiffness matrix and relevant
matrix are formed. Secondly a seven orders equation
can be built in every interval when the first three
modals of antenna and antenna pedestal are used.
Thirdly, the equation has been solved using above-

mentioned method.
Point A
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Fig.2 The radar antenna system in calculation example

The calculation results of first twenty seconds have
been drawn in Fig.3 and Fig.4. Fig.3 is the
displacement of point A in X°Y°Z°. Fig.4 is the
antenna traction torque. Because the rotation radius of
point A is 3.57m, the deformation displacement of
point A is too small to be observed versus the rigid
displacement of point A, so the deformation
displacement of point A is amplified 500 times in
Fig.3. And in Fig.4, the velocity and the acceleration

of point A in Eq.(7) are also amplified 500 times.

Displacement/m

Time/s

Fig.3 The displacement of point A
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Fig.4 The antenna traction torque

4 Conclusion

In this paper, the dynamic equation of a radar
antenna mechanic system which consists of two flexible
bodies is established based on the Lagrange’s equation
and the finite element method, mode coordinate is used
to reduce the orders of equation. Finally, the calcula-

tion method and engineering example are given when the
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angular velocity of antenna is invariable. The equations
in this paper are built on the small deformation
assumption. Large deformation is not allowed for radar
antenna, so the assumption is rational .

Because mode coordinate is used to reduce the
orders of equation, the solution efficiency is very

higher than the direct solution.
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