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Abstract :

Variable precision rough set (VPRS) is an extension of rough set theory (RST) . By setting threshold value j3,

VPRS looses the strict definition of approximate boundary in RST. Confident threshold value for 3 is discussed and the

method for deriving decision-making rules from an information system is given by an example. An approach to fuzzy

measures of knowledge is proposed by applying VPRS to fuzzy sets. Some properties of this measure are studied and a pair

of lower and upper approximation operators in fuzzy sets are described. Research results reveal that, based on VPRS, fuzzy

membership functions can be explicitly interpreted and semantics of membership values can be explicitly stated.
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Rough set theory (RST) introduced by Z.Pawlak
in 1982 has been described as a new mathematical tool
to deal with vagueness and uncertainty. This approach
has been successfully applied to machine learning,
knowledge acquisition, decision analysis, knowledge
discovery from databases, pattern recognition, expert
systems and decision support systems. However, an
object classified using initial RST, is assumed that
there is complete certainty that it is a correct
classification by an equivalence relation. Namely, an
object belongs to or not to a classification. An object
cannot be classified in a level of confidence in its
correct classification. In its formalism it cannot
recognize the presence or absence of non-deterministic
relationships, i.e. the ones which can lead to
predictive rules with probabilities less than one. In
real world decision making, data in an information
system acquired by means of random or statistical
method are often ambiguous, incomplete, and noisy.
So the patterns of classes often overlap, which is not
sufficient to produce deterministic rules but may be
quite possible to identify strong non-deterministic rules
with estimates of decision probabilities. To overcome
these problems, an extended variable precision rough
set (VPRS) model was proposed in Ref. [1]. By
setting threshold value B,VPRS relaxes the strict
definition of approximate boundary in initial RST to
allow for probabilistic classification. In contrast to
RST, when an object is classified in VPRS there is a

level of confidence in its correct classification, which
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perfects the concepts of approximation space, and
helps to discover related knowledge from non-related
data. Although threshold value (3 has been investigated
by some authors, there is still a lack of systematic
study. In this paper, threshold value 3 is investigated,
rules based on VPRS are induced through an example,
a fuzzy measure of knowledge is proposed by applying
VPRS model to fuzzy sets, some properties are
discussed, a sound semantic interpretation of fuzzy
membership functions is proposed, and semantics of

membership values are explicitly stated.
1 Variable Precision Rough Set

1.1 Basic concepts

When an object is classified in VPRS, a confident
threshold value for 8 needs to be defined. W.Ziarko
considered (3 as a classification error, defined to be in
the domain [O.O,O.S)M. However, A.An et al. used
B to
classification, in which case the appropriate range is
(0.5,1.0]. They referred to the technique as
enhanced RST? . VPRS model was extended to
incorporate asymmetric bounds on certain classification
probabilities in Ref. [3].
this paper is restricted to initial VPRS version.
Suppose S = (U,A,V,f) is an
{Ul,Uz,U3,"',

U, | is a finite set of objects(universe) , A = | a ,

symbol denote the proportion of correct

Without loss of generality,

Definition 1

information system, where U =

@y yQ3," " 5@ 4] | is a finite set of attributes. If the
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attributes of set A can be partitioned into a set of
condition attributes € = (/) and a set of decision
attributes D = 75, A = C U D and C (N D = ¢,
such a table is also called a decision table. V, is the
domain of the attribute a, V = V, and f: U x A —
V is a total function such that f(x,a) € V, for Y a €
A and Y x € U, called information function.

To every subset (/j P C C, the equivalence
relation is denoted by

I = 1{(x,y) € UxU: f(x,p) = f(y,p) ¥Vp
€ P}

The corresponding equivalence class is denoted by
I(P). In terms of the basic ideas of VPRS, the
definitions are given as follows.

Definition 2 For a given information system S
=(U,A,V,f),A=CUD,XcU,PcC,0.5c<
B < 1.

approximation of X in S are defined, respectively, by

‘ [ 1(P) N X|
apf () = U {rp) LEEIOLXL S gl

B-lower approximation and S-upper

apri(X) = U {I(P);‘_I(’%IX_| S 1_5}

Definition 3 [3-negative region and [3-boundary
region of X are defined in S, respectively, by

negt (1) = U {1(p) LLPIOXL _y )

badf(X) = U {1(P):1 - B < Lﬂ%ﬁ < 8]

where | + | denotes the cardinality of a set.
Definition 4 The measure of quality of classi-
fication is defined by
XN 1P|

7o) = |U{rp) AL gl [y

The value ¥*(P,D) measures the proportion of

objects in the universe for which classification is
possible at the specified value of 3.

Definition 5 An approximate reduct red’(C,D)
denoted by S-reduct is defined as the minimal subset of
C which keeps the quality of classification unchanged
at the specified value 3.

red’(C, D) has the twin properties that:

D) ¥(C,D) = ¥ (red’(C,D),D);

2) No proper subset of red”(C, D) can give the
same quality of classification at the same (3 value.

Reducts are important to final objective of
constructing a series of rules to classify a number of
objects in the model, the related references have
discussed two particular aspects of reducts. On one

hand there is the problem of finding the reducts for a

given system. This problem is NP—completeH: . On the
other hand there is the problem of finding local reducts
for each object, such as set theoretical approach.
Further research has been conducted into dynamic

reducts and tolerance reducts.
1.2 Research into value f§

If 8 = 1,aprs(x) and aprs (x) coincide with the
lower and upper approximation sets in RST. VPRS
model comes back to the original RST. For the
inconsistent rules of RST, if the inconsistency degree
is weak according to the setting threshold value 3, an
indeterministic rule can be considered as a
deterministic one originally but becomes a little
inconsistent because of some noises mixed in the given
data. This rule or the main of it can be viewed as
However,

deterministic one. if the inconsistency

degree is strong, the corresponding rule is real
indeterministic and should be treated as a random rule.
B value is inversely related to the quality of
classification. There are two different directions that
can be taken. In one direction, when p value
increases, the quality of classification is decreasing.
Positive region and negative region of set X will
become narrower. In other words, the boundary region
of set X will become wider. A small number of objects
are classified. In the other direction, more objects
which are classified can be classified incorrectly.
Proposition 1) If condition class X is not
given a classification with 0.5 < 8 < 1,then X is also
indiscernible at any level 8 < 8, < 1. In contrast, if
condition class X is given a classification with 0.5 < 8

< 1, then X is also discernible at any level 0.5 < (3,

< B.

If a condition class is not given a classification for
every 3, a condition class X is called absolutely
indiscernible or absolutely rough. In other words, if
and only if bnds (X) = (¥, a condition class X is
absolutely rough. In contrast, those only given a
classification for a range of 3 is called relatively rough
or weak discernible. For each relatively rough set X,
there is a threshold value on the 3 value on which set
X is discernible. Associated with each conditional
class is an upper bound on the 3 value. If any (8 value
chosen which is equal or below the threshold means the
set X is discernable. Otherwise, there 1is no
opportunity for majority inclusion, hence the set X is

indiscernible. The highest of these upper bounds on
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the 3 values is defined as 3, -

Proposition 2 For any 0.5 < 8 < 1, the
following holds:

@ api (X U Y) 5 api(X) U api (V)

@ apr (X N Y) C apyy (X) N apr(V);

@ aprs (X U Y) 5 apiy (X) U apr(Y);

@ apr (X N Y) C aprir(X) M apri (V).

Proof of O

given 3 value,

Foranytwosetng U,Yg U,

PN xyUnl _ L) N x|
[ 1(P)] = TI(P)]
and
PN xUnl_11e) Ny
[ 1(P)] = TI(P)]

Therefore, apr (X U ¥) 5 apri (X) U api (V).
Proof of @

given (3 value,

Foranytwosetng U,Yg U,

PN xNY| _ L 1(P) N x|
[1(P)] S [I(P)]
and
pnxnAvl _ e Nyl
[ 1(P)] S TI(P)]

Therefore,&rﬁ(X Ny ggp_r’,f(X) N EEIJIE(Y>.

@ and @ can be proved in a similar way.
1.3 An example

An information system is given in Tab.1,S =

(U,A,V,f),where U = {n,, ny, ny, ny, ns, ng,

n, I, the set of condition attributes C = {a,, a,, as,
gy Qs aG} ,the set of decision attributes D = {d}.
Tab.1  An information system
U Condition attributes C Decision attribute D
a; a, as ay as ag d

n 1 2 1 1 2 1 N
ny 1 2 2 2 2 2 N
n3 2 2 1 2 2 2 N
ny 1 2 1 1 2 1 P
ns 2 2 2 2 1 1 P
ng 1 2 1 1 2 1 P
n, 2 2 2 2 1 2 P

The universe U is partitioned into the following
equivalence classes:

usc = %Xl’ Xz, X3s X4’ Xsé

where X, = {n,, ng, ngl, Xo = {n,}, Xy = {nsf,
X, = inst, Xs = {n,f.

U/D = {Yy,Y,!
where Y, = %nl,nz,n3},YP= {n4,n5,n6,n7}.

B-reduct and quality of classification computed
using the same method as depicted in 1.1 are shown in

Tab.2.

As an example, Tab.3 provides the minimal rules
associated with B-reduct {a,, a; b,

Tab.2 [-reduct and quality of classification

B-reduct Quality of classification Brnax

fa, ! 1.00 0.57
far,asl 1.00 0.67
far, ay! 1.00 0.67
lay, as! 0.57 1.00

Tab.3 Decision rules for the S-reduct ta,,as!

Rules Support  Degree of confidence
@ = 1A ay= 2N 1 1.00
@ =2 M ay = 1y 1 1.00
alzl/\a3zli%>l-’ 3 0.67
(11:2/\(13:2%;]J 2 1.00

2  Fuzzy Measure of Knowledge Based on
VPRS

Definition 6 Iet S = (U,A,V,f) be an
information system. Inspired by Ref. [5], a fuzzy set
FX is defined as

FX = (o (0)ip € Usgin(p) = LEVOLXD

where s (p) is fuzzy membership function.

2 (p) can be interpreted as the conditional
probability that an arbitrary element of I( P) belongs
to a given class X. By definition, the membership
values are all rational numbers. If elements are in the
same equivalence class they must have the same degree
of membership. That is indiscernible elements should
have the same membership value. Obviously, 0 <
/Jr*x(p) < 1. For each element x & U,if/xFX(p) =0
then p does not belong to FX, and if /zm(p) = 1 then
p surely belongs to FX. If 0 < p(p) < 1 then p
possibly belongs to FX, in this case, there is a
transitive state between p € FX and p & FX.

Definition 7" Suppose S = (U, A, V,f) is an
information system, and FX is a fuzzy set of U. Then
lower approximation and upper approximation of FX in
S are defined, respectively, by

pix(p) = inflpn(p)ly € I(P)] Yp €U

pix(p) = suplun(p)ly € I(P)] VYp €U

Proposition 3 For any two sets X and Y in an
information system S = (U,A,V,f), if X cVY then
FX, c FXy.

Proof VY p € U, clearly, X c Y implies
l1(P) N X| < [ 1(P) N Y|, the following holds:

ey N xl_ 1Py Nyl
Pyt s TP

That is to say Mix, < M, s therefore FX, c FX, .
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Proposition 4 For any two sets X and Y in an
information system S = (U,A,V,f),the following
holds:

O FXyyy o FXy U FXy;

@ FXyny c FXy N FX,.

Proof of O Vp € U,

L) = (PN XU _
(P ]

|<I<P> NOUUP) AN
[ 1(P)]

max{ | I(P) N X|, | 1(P) YI
1P|

max{”<P> nxl 11p) N Y\}

Pyl TI(P)]

maX{/lrxX »#ny} = Hrx, URX,

Therefore FXy,y D FXy U FX,.

@ can be proved in a similar way.

Definition 8 Suppose S = (U,A,V,f) is an
information system, FX is a fuzzy set of U, and 0.5 <

B =< 1.The lower approximation and upper approxi-
mation are defined, respectively, by

tix(p) =UHI(P) uw(p) = Bt VpEU
w(p) =UI(P)| p(p) >1-Bl ¥YpEU

Proposition 5 Let FX is a classical set, for 0.5
< B<= l,p’il((p) and ,u‘%(p) come back to the lower
approximation aprX and upper approximation aprX of
original rough set model.

Proof For 0.5 < B <
set, and yb‘x(p) € 10,1}, hence,

rix(p) = 1p € Ulpn(p) = 11

Then, Vy € I(P),

Ip € Ulux(p) =11 = {p € Ulpx(y) = 1}
= {p € UlI(P) c FX|
Therefore i (p) = aprX.

1, FX is a classical

The proof of p5(p) = aprX is similar.

The lower approximation i (p)of fuzzy FX can
be interpreted as the union of the equivalence class of
the elements whose degree of confidence belonging to
FX is not below 3, while 15 (p) can be interpreted as
the union of the equivalence class of the elements
whose membership degree belonging to FX is above 1 —
B.

The theory of fuzzy sets is typically developed as
an uninterpreted mathematical theory of abstract
membership functions without the above limitations. In
contrast, VPRS provides a more specific and more
concrete interpretation of fuzzy membership functions.
These are illustrated through the given example in 1.3

as follows.

Let fuzzy set FX = {FX,,FX,|, where FX, =
Yy and FX, = Y,.
By definition 6,the membership functions of FX,

and FX, are given, respectively, by

FXy = 10.33/n,,1/n,,1/n5,0.33/n,,0/n;,
0.33/n4,0/n, 1

FX, = 10.67/n,,0/n,,0/n;,0.67/n,,1/ns,
0.67/n4,1/n;}

Let 0.5 < 8 < 0.67, the lower approximation and
the upper approximation of fuzzy set FX are as follows:

/l'?_x(P) = 5”2, Nyy Nz, Ny, N5y Ngy n7}

&(P) = ;nls Ny, N3, Ny, Ns, Ng, n7}

Let1 = 8 > 0.67, the lower approximation and
the upper approximation of fuzzy set FX are as follows:
tix(p) = {ny, ny, ns nyl

%x(P) = ;77«1, Ny, N3y Ny N5, N, 77«7}
3 Conclusion

The notions of fuzzy set theory and rough set
theory are not rival ones but two different mathematical
tools and aim to two different purposes. Typically, a
fuzzy set is defined as U — [0,1]. Although such a
system provides a consistent

fuzzy sound and

mathematical model, there is a lack of semantic
interpretation of fuzzy membership values and fuzzy set
theoretic operations. This might lead to some
difficulties in the applications of the theory. We apply
VPRS to fuzzy set.

describing a concept is viewed as the indiscernibility of

The source of the fuzziness in

elements. Thus a more restrictive, but more concrete
view of fuzzy set and a more specific interpretation of
fuzzy membership functions are provided. Such more
concrete views of fuzzy sets, with explicitly stated
semantics of membership values, can be more useful

for the applications of the theory of fuzzy sets.
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