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Abstract:

To subtract the slit function from the measured spectrum, a wavelet-based deconvolution method is proposed

to obtain a regularized solution of the problem. The method includes reconstructing the signal from the wavelet modulus

maxima. For the purpose of maxima selection, the spatially selective noise filtration technique was used to distinguish

modulus maxima produced by signal from the one created by noise. To test the method, sodium spectrum measured at a

wide slit was deconvolved. He-Ne spectrum measured at the corresponding slit width was used as slit function. Sodium

measured at a narrow slit was used as the reference spectrum. The deconvolution result shows that this method can enhance

the resolution of the degraded spectrum greatly.
Key words:
In spectrum measurement, the resolution of a
received signal is greatly affected by slit width of the
monochromator'’ . In general, increasing the slit width
will lead to a decrease of resolution. Therefore, a
narrow slit is always preferred. On the other hand,
when measuring a low intensity spectrum, a wide slit
must be used not only to increase the received areas,
but also to get a degraded spectrum. The influence of
the slit width can be described as a slit function, and
the received spectrum is a convolution of the ideal
spectrum and the slit function. Thus, deconvolution is
needed to restore the high resolution spectrum,
especially in low intensity spectrum measurement.

The signal deconvolution problem is an inverse
problem mathematically modeled by a Fredholm integral
equation of the first kind. This equation is usually an
ill-posed problem when it is considered in a Hilbert
space framework, requiring regularization techniques to
control arbitrary error amplifications and to get adequate

231 In this paper, we present, under a

solutions
projection onto convex sets (POCS) framework, a
wavelet-based method for obtaining a regularized
solution to discrete Fredholm integral equations of the
first kind corrupted by additive noise. Our method
includes the multiscale edges reconstruction algorithm
which was recently applied to spiky deconvolution™ . In
our case, we deal with a more general model, and our

method has a wider application.
1 Theory

The convolution process has the following generic
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form:
h*xr+n=f (1)
where h is the slit function; n is noise; r is the ideal

spectrum; f is the received spectrum. After

discretization, Eq. (1) becomes
Hr +n=f (2)
where H is a matrix corresponding to the action of filter

h.
1.1 The POCS method

POCS™ widely used in the recovery problem is an
iterative method to find a common element for a series
of given convex sets which are established according to
the a priori known properties of the solution. If C; (i
=1,-,m) are the convex sets, and P, (i = 1,--,
m) are the corresponding projection operators, assume
that

Co =irj C =

Then the solution will be into C,, and can be
obtained by the iteration

Fro = PP, Pr, k=0,1,2- (3)

where the initial value r, is an arbitrary vector.

m-1"

1.2  Signal reconstruction from multiscale edge

The multiscale edges reconstruction algorithm was

57 :
1[ ] . Here we review some

proposed by S.Mallat, et a
important results of this method. First, we define the
absolute maxima of the discrete wavelet transform as
any sample W(j,n) satisfying the conditions (D
(WG = [ WG,n =D and @ [W(j,n)| =
‘ W(j, n+1) |, with the following qualifiers. If D is

satisfied with equality, then @ should be satisfied with
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strict inequality along with the restriction that
‘ W(j,n - l)‘ = | W(ji,n - 2)| . On the other
hand, if @ is satisfied with equality, then (D should
be satisfied with strict inequality along with the
W, +2)

The essence of this algorithm is to compute the
approximation of W(j,n), the
transform of f(x) € L*(R),
projection algorithm:

fin(x) = P(S(],n),W(j,n())>]gjgj} ()

P = DWT'(P,P.P,)
where %nof is the positions of the local maxima of
HwG,n) | [SCJ,n)i
frequency signal; DWT™' denotes the inverse dyadic

wavelet transform operator; P,

restriction that ‘ W(j,n + l)‘ =

dyadic  wavelet

using an alternate

at scale j; is the low

is the projection
operator onto V':

= DWT - DWT (5)
where V is the space of all dyadic wavelet transforms of
functions in L*(R). Py is the projection onto I", and
I' is the affine space of sequences of functions g;(x)

€ K such that gj(x_,-‘no) = W(j,n,) for any index j

and all maxma positions (j, ny) and K is the space of

all sequence of functions gj(x) such that

A d
5] = (gl 427 %
J

dx
and the operator P transforms g]-(x) & K into h,(x)

cr,
h}(x> = Pp(gj(x)) — g[_(x) + aezi]x +Be,2ﬁx

where the constants « and [ are solutions of the

2
e

following equations:

- i
a0 4 Be )

W(j,0) - g (x:)
| } (6)
ae” 514 Be” N = W(j,1)

where x; , and

- & (xj,] )

x;, are the abscissa of two consecutive
modulus maxima of W(j, n). Finally, sign constraints
can be imposed to suppress any spurious oscillation in
the reconstructed wavelet transform. Thus, Py is the
projection operator onto convex set Y, and let Y be the
set of sequence (h](x)) & K such that for any pair of
consecutive maxima positions (xjy,, ,xjy,,,rl) and x €&
(500 %50m ]

sgn(g;(x)) = sgn(x;,)

if sgn(xj,,,) = Sgn(x/,nn)
Sgn( géx ) = sgn( Xjonst ~ x/”’)
if sgn( xj‘n) # sgn( x,-,nn)

1.3 Wavelet-based deconvolution

Here, we present our nonlinear adaptive POCS

method for the deconvolution problem. First we
suppose a priori known the noise variance (i.e., we
zero-mean (Gaussian

consider an additive, white,

noise). And we formulate the following convex set

= {r:lf-Hrl; <0} (8)
where 6 can be calculated from the known variance.
The projection operator onto C can be obtained by

solving the following problem:

winl 7, - 11
U } (9)
t. Hf— Hrp||2 =
where r, is the projection onto C of r. Using the

Lagrange multipliers method, we obtain
r,=Pcr=r+(HH+ (/1)) H'(f - Hr)
(10)
where A is the Lagrange multiplier which must satisfy
the constraint of (9). Charalambous”’ suggested an
effective method to find it by solving a nonlinear
equation:
1 RG]
PA) = NZ_ (ATH(p)|* +1)?

-8 =0

(11)
where F(y) and H(p) are DFT’s of vector f and
matrix H, respectively, N is the length of F(p).
Noticing (11) monotonically decreases if A > 0, one
dimensional range-search algorithm can be used to find
the optimum value of A .

As for the selection of maxima, we use the
spatially selective noise filtration (SSNF) techni-
que“o‘llJ which is based on the fact that sharp edges
have large signal over many wavelet scales and noise
dies out swiftly with scale. Thus, given a signal
approximation f, at each iteration, the procedure of
wavelet modulus maxima selection is as follow.

(D Locate the absolute modulus maxima at each
scale j, and form the set

S, = i, | W(j,n)| is local maxima/
® Compute the correlation corr;(j, n) at scale j,

where
I-1

corr,(j,n) = HW(j+m,n) (12)

m=0
where [ < M —j + 1, M is the total number of scale.
Usually, we select [ = 2.
@ Choose the locations

corr, (j, ng) W(j,ng)
ns €5 PCOIT(] PW(j) (13)
Pcorr(j) = Zcorrz(],n) ,PW(]) = 2W<j,n)2

Then save the location and values of W(j,ng),

reset the corresponding corr, (j,ng) and W(j,ng) to
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zero, and remove ng from S;.
@ At the finest scale, where noise is dominating,

\W(l,ng) ]| s multiplied with a weight A = 1 to

suppress noise.

® Repeat steps @ and @ until the power W(j,
n) is near equal to a pre-decided threshold or S; is
empty.

We consider these ng as locations of modulus
maxima of { | W(j,n) |} created by the signal. These
values, joint with the low frequency S(J,n), can
serve as the input of the multiscale edge reconstruction
algorithm described in section 1.2.

Finally, we summarize our algorithm:

ry,, = PPCrk k :0,1,2,"‘}

ry = f

2 Experiment

(14)

An ARC-spectrapro-300I( Acton Research Corpo-
ration, USA) the

resolution equalling 0.1 nm and the spectrasense CCD

served as a spectrograph with
(Acton Research Corporation, USA) was used to record
the spectrum. To get the slit function, He-Ne source
(5 mA,1.7 mW) was used. It has a very narrow
half-width. Sodium spectrum with two lines at 589.0
nm and 589.6 nm, respectively, were used as the input
signal. We first measured the sodium spectrum at a
relatively large slit width (e.g. 220 ;Lm) , and recorded
the He-Ne spectrum at this slit width to use as the slit
function, then measured the sodium spectrum at a
narrow width (e.g. 50 ;Lm) to contrast with the result
of deconvolution.

From Fig.1, it is clear that the resolution is

greatly influenced by the slit width: two peaks can be
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Degraded spectrum and slit function. (a) Sodium

distinguished clearly at the narrow slit, but when spectrum at slit width equals 50 ym; (b) Sodium spectrum
at slit width equals 220 um; (c¢) He-Ne spectrum at slit

width equals 220 pm

enlarging the slit, they can’t be separated any more.

In this experiment, the wavelet is the quadratic

spline of compact support and one vanishing 1.0
moment’' . This class of wavelet is especially efficient 0.9
in edge detection of a signal. = gj :
Fig.2 shows the result of deconvolution. The £ 06l
resolution is greatly enhanced, but the half-width of the : 0.5F
deconvolved signal is still larger than the one measured § 0.4
at narrow slit. This is because in the procedure of the g; -
selection of modulus maxima at the finest scale where 0:1 B
noise is dominating, a large weight A = 1.2 is used to ob—t—t 11 1 1
582 584 586 588 590 592 594 596

remove most of the noise, with the result of reducing
the resolution. And the asymmetry of the system made
the measured slit function a little different from the real

one, which also was contributive to the degraded

A/nm

Fig.2 Deconvolution result

resolution of the deconvolution result.
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3 Conclusion

In this paper, we use a nonlinear POCS method to
solve the spectrum deconvolution problem. The method
includes restoring signal from wavelet modulus
maxima. For the purpose of selecting modulus maxima,
we use the spatially selective noise filtration method
which is more straightforward, easier to implement and
more robust. Sodium spectrum with two lines at 589.0
nm and 589.6 nm is deconvolved and a satisfactory
result is achieved. The method allows the inclusion of

any kind of constraint in other practical problems.
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