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Abstract:

In this paper, a composite grid method (CGM) for finite element (FE) analysis of an electromagnetic field

with strong local interest is proposed. The method is based on the regular finite element method in conjunction with three

basic steps, i.e. global analysis, local analysis, and modified global analysis. In the first two steps, a coarse finite

element mesh is used to analyze the global model to obtain the nodal potentials which are subsequently used as artificial

boundary conditions for local regions of interest. These local regions with the prescribed boundary conditions are then

analyzed with refined meshes to obtain more accurate potential and density distribution. In the third step, a modified global

analysis is performed to obtain more improved solution for potential and density distribution. And iteratively, successively

improved solutions can be obtained until the desired accuracy is achieved. Various numerical experiments show that CGM

yields accurate solutions with significant savings in computing time compared with the regular finite element method.
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Singularity, large variations or discontinuities of
material coefficients, potential or density in limited
parts of the domain which are common in most
electromagnetic field models such as electric machines
and transformers increase the difficulty of accurately
predicting detailed local potential and density
distributions. For this kind of problem, the usual
approach of engineers is using unstructured meshing
with local refinement of large size-transition. However,
this treatment often leads to problems: bad conditions
of stiffness matrix; very expensive computation.
Especially for 3-D models, unstructured meshing with
the above requirement is still not mature. In this
paper, we propose a composite grid method (CGM)
which is not computationally expensive yet still an
accurate method for FE analysis of such problems.
CGM has a lot in common with the fast adaptive
composite grid method ', local defect correction
(LDC)D] , and global-local method™>* . While CGM
possesses all the advantages of the above three
With

CGM, the FE analysis is performed in several iterative

methods, it also has its own characteristics.

steps. It begins with an FE analysis using a coarse
mesh of the global model. According to this global
analysis, local regions requiring more detailed analysis
are subsequently identified. Along the boundaries of

every local region, the electric potentials interpolated
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from the global analysis are used as the enforcing
boundary conditions. Consequently, each local region
is posed as an independent problem. Fine meshes are
used over these small local regions for local analysis to
obtain accurate local field distribution. After the local
analysis, the resulting potentials of local regions are
utilized to perform a refined global analysis which
obtains more accurate potential and density. Then
results of the refined global analysis are fed back to the
iteratively seek
until the

local analysis. Thus, we can

successively improved solutions desired
accuracy is obtained.

In the following, section 1 describes the algorithm
of the CGM. Section 2 presents three numerical
examples to advance the discussions. First, we use
CGM to solve a Possion equation to demonstrate the
behavior of the method, such as convergence rate and
accuracy of the solution; then, we apply CGM to an
electric machines’ FE analysis which has strong local
interest in the air gap area; at last, we begin to use
CGM to deal with Team Problem-21. These three
examples demonstrate that CGM can obtain solutions of
the same quality as those from the regular finite
element with a global fine mesh. In addition, it is
demonstrated that the computing time of CGM is much
shorter than that of the regular finite element analysis
with the same degree of accuracy. Hence, CGM is a
general-purpose analysis tool for electromagnetic FE
problems which need local detailed analysis. In section

3, we present the conclusions and future work.



50 Wang Desheng, and Wan Shui

1 Composite Grid Method

For simplicity, we consider the following boundary

problem:
Lu = f  inQ)
u =g on d0)

where 2 is a domain in Fig.1 and (2 is the boundary
of Q3 L is an elliptic linear operator; f and g are
functions on . And u has comparatively large
variations or strong local behavior in the domain (2,

which is a subdomain of  and Q,(2, c 2).

First we recall the concept of composite grids and
introduce some notations. In Fig.2, the mesh of 2 is
called the global coarse mesh; the mesh of (2; is called
the local fine mesh. We denote them by G* and g~ ,
respectively. The mesh G: = G* U g is called the
composite grid (Here we use the traditional term, not
“composite mesh”.) For later uses, we have the
following additional notations:

1) We call Q, the critical region, (2; the local
region and ) the global area.

2) We denote I : =d02; — I0.

3) We denote G; :={p | p is anode of G" and p
is in Q1.

4) We denote the following variational form:
(Lu, v) = J Lu - vd()
0

Now we come to the outline of the algorithm of
CGM:

1) Perform the initial global analysis;

2) Perform the local analysis;

3) Perform the modified global analysis. If they
converge, go to end; else, go to 2).

Below, the three steps are discussed in detail.

I

I

]
c
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Fig.1 A domain (2 Fig.2 Global mesh G" and

local mesh g"

1.1 Initial global analysis

The global analysis is to solve the equation:
(LU, ,v) = (f,v)-(Lg,v),Yv € H,, where H_ is
the finite element space corresponding to the mesh G~

and the boundary being J2. The global analysis must

be an “adequate” analysis, which means the global
behavior should be accurately determined and local
details (i.e. local large variations) should be at least
grossly incorporated. That is to say G must not be too
coarse for the analysis.

After getting the solution U, firstly, a critical
region (2, requiring a more detailed analysis may be
identified from U, . Usually, U, has large variations and

is not accurate enough in this region. (2, can be

determined by way of using a posteriori error estimation
or by trying a region and then modifying it. Then we
enlarge (2, to the local region (2;. The enlargement
depends on the criterion: U, is accurately determined on
the boundary and outside of (2, i.e. U, is not accurate
only in the interior of (2;. Finally, we separate (2; with
a more refined local mesh g * to predict more accurately

the detailed state of the local region.
1.2 Local analysis

The local analysis is to solve the equation: (LU,
v) = (f,v) - (Lg,,v), Vv € H;, where H; is the
finite element space corresponding to g , and g,
represents the artificial boundary conditions:
g on (), N a0
gi"m" ::{U on I' }

It means if some part of the local region’s

c

boundary coincides with a part of the global area, we
use the given Dirichlet boundary conditions. But for
the interface I" of (2; and (2, we use the obtained
solution U, . Actually, for a point Q of (2, its value
is interpolated from U,. We first find the element E; of
G" where () is, and then use the Newton iteration to
get the local coordinates, finally we make use of the

shape functions to obtain the interpolation value.
1.3 Modified global analysis

The modifications to the initial global analysis lie
in:

1) We modify 202 to be 32 U Q...

2) We also impose the artificial Dirichlet boun-
dary conditions on . As in the local analysis, the

artificial boundary values of G’s nodes are
interpolated from U, .

Thus our modified global analysis is to solve the
equation (LU" ,v) = (f,v) - (Lg.,v),Yv &E H",
where H" is the finite element space corresponding to
G and the boundary being 92 U ., .Here,

g on d(2 }

g dnU(]Q" ._ { U{ on a\ch
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After obtaining U" ,let U, = U" . Because the
solutions of the critical regions are derived from those
of the refined local analysis, U, are much more
improved. Then we can go to the local analysis, then
the modified global analysis and iteratively achieve
successively more accurate solutions as desired.
iterations  are

Usually, five enough for the

convergence.
2 Numerical Experiments

In this section, the effectiveness of the composite
grid method (CGM) is demonstrated by its application
to three examples: a two-dimensional Poisson equation
with strong local behavior; a two-dimensional
permanent magnetic electric machine; and the Team
Problem-21. In the first example, the results of the
CGM are compared with those from the regular FE
analysis with a global coarse mesh, the regular FE
analysis with a global fine mesh, and with the exact
solution. Also, we present a table for showing the
convergence state of CGM.

Example 1 The first example is a Poisson
equation given by

Pu  PFu

ﬁ+3fy2=f 0<x<1;0<yx<l

u=g on all boundaries
where f = O and g = In((x + 0.01)* + (y + 0.01)%).
And the exact solution is u = In((x + 0.01)*> + (y +
0.01)*). For example, the global coarse mesh is a
uniform 15 x 15 mesh; the global fine mesh is a
uniform 100 x 100 mesh. The critical region is [0,
0.2] x [0, 0.2] and the local region is [0, 0.25] x
[0, 0.25]. And the local fine mesh is a uniform 25 x
25 mesh. We use bilinear quadrilateral elements in this
example.

We have Tab.1 to list the comparative error norms

from various FE analysis methods. In the table, the

2) 12

where n

norm || | is defined by [l = ( 2 ‘ u;
T

is the nodes number. And | e| is the error norm of the
is the

FE solutions with the exact solutions. | u.,

norm of the exact solutions. It is evident that CGM’ s
Tab. 1

Comparative error norms of various

analysis schemes in example 1

[tem “ e“/” U
FE analysis with a global fine mesh 4.702 x 107*
FE analysis with a global coarse mesh 4.143 x 107
One iterations 1.281 x 1073
CGM Three iterations 5.130 x 107*
Five iterations 5.021 x 10~

solutions agree very well with the exact solutions and
can converge with the regular finite element solution
with a global fine mesh.

Example 2 The second example is a permanent
magnetic resistance electric machine, which has strong
local behavior in the air gap and neighboring areas. For
this, we apply CGM to it. Fig.3 shows a quarter of the
global coarse mesh. After the initial global analysis,
the critical region is chosen to be the air gap, and the
local region to be properly larger than the air gap.
Using CGM, we find the solutions of the FE analysis
agree well with the results of the physical experiments
on electric potentials, density and eddy current

distribution.

Fig.3 A quarter of the global mesh for
CGM analysis of an electric machine

Example 3 The third example is Team Problem-21
which is about the electromagnetic analysis of a 3-D
stray field loss model. Model B is chosen for FE
analysis. And considering the symmetry of the
problem, a 1/2 region is taken for computing. The
most striking point of Model B is: The eddy currents in
the steel plate area vary rapidly, i.e. with very strong
local interest. Hence, we perform an FE analysis of it
with CGM. In our CGM analysis the whole model (i.e.
1/2 region) is chosen to be the global analysis area;
the steel plate is chosen to be the critical region; a
cubic area covering the steel plate and including the
plate’s neighboring gap area is chosen to be the local
region.

Fig.4 and Fig.5 show the global coarse mesh and
a part of the local fine mesh, respectively. Even
though our CGM analysis of Problem-21 is just a
beginning, we have obtained satisfying results about
the eddy current distribution of the steel plate and the
magnetic flux densities distribution on the surface of
the steel plate. And we find CGM is an effective
method for further dealing with Problem-21.
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Fig.4 Global coarse mesh for CGM analysis

of a transformer of Team Problem-21

Fig.5 A part of the local fine mesh for CGM

analysis of a transformer of Team Problem-21

3 Conclusion and Future Work

In this paper, a composite grid method is
developed for FE analysis of an electromagnetic field
with strong local interest. Great computational
efficiency of CGM is achieved by using a coarse mesh

for the global region, and refined mesh for the local re-
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gion. And the addition of the modified global analysis
enhances the effectiveness. Moreover, the procedure
allows one to follow an iterative procedure to gain
further accuracy in the solution. Three numerical
examples were used to demonstrate the efficiency of
CGM. The results indicated that the present method not
only produced accurate solutions, but also realized
considerable time-savings in computation.

1) The improvement of the defining method of the
critical region and the local region to increase the
efficiency of the method;

2) The mathematical analysis of errors estimation
and convergence rate of CGM;

3) The parallel implementation of CGM;

4) Further FE analysis (using CGM) of Problem-
21.

References

[1] McCormick S F, Thomas J. The fast adaptive composite grid
method (FAC) for elliptic boundary value problems[] 1. Maih
Comp , 1986,46:439 — 456.

[2] Ferket P J J, Reusken A. Further analysis of the local defect
correction method [J]. Computing , 1996, 56 (2): 117 -
139.

[3] Mao KM, Sun C T. A refined global-local finite element anal-
ysis method [J]. Int ] Numer Methods Eng, 1991,32: 29 -
43.

[4] Whitcomb J D. Iterative global/local finite element analysis

[1]. Computers and Structures ,1991, 40(4): 1027 - 1031.

ITEREADH

oK

(" PEHERAFE RAAAFHRRAFHRA, LT 100080)
C AHRFEFR, HF 21009)

W E AIHET A E LR TR X IR &R AT H R0 T A Mk XA
B TRE AR i, 0 ERDH, AIRp AT A EJG 0 BARDAT 3N AR T IR AT 2F F,

AR ARG P A AT B

AT AT BN B R B R AR AR Bt — b o AT 8 B AR KR A IR

b KX TAREHEGHIRR B B meg MR AT, 133 ARG b B G 55
I EE 3T P AT BG4 SR oA, B R R R R, AR R R EAR 133
FIFH R R E R E S HGER AT RN, 5@ FHARTFT Mk, L4 MBEEFE R

RAGAT L) 25 R HACH 3 S0 & 1E 5
KEE L& Rie; SRS B4
HESES 0242.21



