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Abstract:

In this paper, the Kalman filter is used to predict image feature position around which an image-processing

window is then established to diminish feature-searching area and to heighten the image-processing speed. According to the

fundamentals of image-based visual servoing (IBVS), the cerebellar model articulation controller (CMAC) neural network

is inserted into the visual servo control loop to implement the nonlinear mapping from the error signal in the image space to

the control signal in the input space instead of the iterative adjustment and complicated inverse solution of the image

Jacobian. Simulation results show that the feature point can be predicted efficiently using the Kalman filter and on-line

supervised learning can be realized using CMAC neural network; end-effector can track the target object very well.
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Vision is a useful robotic sensor since it mimics
the human sense of vision to guide the end-effector to
track and handle the target objects in the environment.
Shirai and Inoue'"” first proposed that a visual feedback
loop can be used to correct the position of a robot to
increase task accuracy, but early visual sensing and
manipulation are combined in an open-loop fashion,

Later, Hill and Park'?

. . . ” .
introduced the concept “visual servoing”— machine

“looking” then “moving”.

vision providing closed-loop position control for a robot
end-effector.

According to the space in which the error signal is
defined, visual servoing can be categorized into two
groups: position-based visual servoing (PBVS) and
image-based visual servoing (IBVS). In PBVS,
features are extracted from the image, and then used to
compute a 3-D reconstruction of the Cartesian space.
The error signal is computed in the Cartesian task
space. The principal advantage of PBVS is that tasks
can be described in Cartesian coordinates, and the
prime disadvantage is its high calibration dependence.
In IBVS, the error signal is defined in the image
space, i.e. based on the image features. IBVS is less
sensitive to errors in camera calibration, requires
smaller computational effort and is more suitable to
tasks where no prior model of the task is available™ .

In IBVS, two important problems must be solved.
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One is the feature tracking in the image plane, and the
other is the mapping from the error signal to the control
signal .

The measurement of the motion of the features on
the image plane must be done continuously and
quickly. The traditional method used to measure this
motion is based on an optical flow technique called
sum-of-squared-difference (SSD). While searching in
whole plane is time-consuming, to decrease the search
space, a pyramidal search scheme is presented. The
pyramidal scheme reduces the time required for the
computation of the SSD algorithm, but reliability can
be sacrificed when the selected feature loses its
tracking properties at the coarser image resolution'* .
In this paper, the Kalman filter and SSD algorithm are
combined. the Kalman filter is used to predict the
feature points of the end-effector and target object, and
then image-processing windows in which the SSD
algorithm is applied are established around the
predicted positions while the area we are not interested
in is discarded. With this method, we can heighten the
image-processing speed and diminish searching time.

As the feature points of the end-effector and target
object are obtained, error signal can be defined in the
image space. Mapping from error signal to control
signal should be implemented quickly to guarantee the
Conventional method is

real-time  performance.

confronted  with  inverse = matrix  calculation.
Furthermore, the image Jacobian should be adjusted
dynamically, so the calculation load is very large.

Here we adopt the CMAC neural network to implement
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the nonlinear mapping. CMAC does not require the
prior knowledge of the target’s movements in the 3-D
space and can take into account unexpected events
such as system disturbance, so it is very appropriate for
robot  control

real-time problems. In the end,

simulation results are provided.
1 Feature Tracking
1.1 SSD method

The SSD method is based on optical flow
technique, which assumes the intensities around a
feature point remain constant as that point moves across
the image plane. The displacement of a point p = (u,
v) at the next sampling time to p’ = (u + Au,v + Av)
is found by finding the displacement Ap = (Au,Av),

which minimizes the SSD measure:
e(p,Ap) = D[ I(u+i,0+)) -
7

I'(u+i+Au,v+j+A0v)] (1)
where [ and I’ are the intensity functions from two
successive images and W is the window centered about
the feature point which makes up the feature template.

While

time-consuming, here, the Kalman filter and SSD

searching in whole image plane is

algorithm are combined to search the feature point.
1.2 Kalman filter

The discrete-time Kalman filter can be defined by

X1 = Ax, + Bu, + Dw, (2)

y, = Cx, + v, (3)
where w, and v, are the process noise sequence with
covariance @ and the measurement noise sequence with
covariance R, respectively. The Kalman filter assumes
zero mean Guassian process and measurement noise
sequences.

We obtain the following recursion equations that
calculate the linear-least-square estimate of x,,, given
¥, through y;,, :

Predictor step

-;'k+l|k = A-;Cw; + Bu, (4)

P = APk\kAT + DQDT (5)

Filter step

;'k+1|k+1 = -;7k+1|k + Kii (Ygar - Ci'lﬁ-llk) (6)

Pk+1\k+l = Pk+1\k - Kk+lCPk+l\k (7)
In (6) and (7)
K., = Pk+l|kCT(CPk+IIkCT +R)" (8)

where K is called the gain matrix; P is called the

covariance of the prediction error.

2 Image Based Visual Servo Control
2.1 Image Jacobian

In IBVS system, the pose estimation is solved
implicitly — if the current view of the object matches
the desired view then the object must be in the desired
relative pose[si. Let X, represent coordinates of the
end-effector in the task space, and X, represents the
corresponding velocity. Let X, represent coordinates of
image feature points and X, the corresponding
velocities. The image Jacobian, J,, is a linear
transformation that maps end-effector velocity to
velocities of image feature points,

X = J.(nX, (9)

The most common image Jacobian is based on the
motion of points in the image. A complete deduction
process is detailed in Ref.[6]. The Jacobian can also
be determined by other methods: estimation, updated

with predictive methods, or solved experimentally.
2.2 Visual servo controller

The state equation is obtained by discretizing (9)
as

X (k+1) = X,(k) + TJ,(k)X,(k) (10)
where T is the sampling period of the vision system.

To make the

end-effector consistent to the feature points of the target

image feature points of the
that can be stationary or moving, an objective function
that places a cost on error in feature positions and a
cost on providing control energy is created” ;
Fk+1) = [X(k+1) - X,(k+1)]"Q -
[X(k+1) = X,(k + D] + X[ (k)LX, (k)
(11)
where @ and L are the weight matrices on feature error
and control input, respectively.
By minimizing (11) with respect to current control
input X, the control input is obtained:
X (k) = - (17 (k)QTJ,(k) + L) TJ (k) -
0lX, (k) - X,(k+1)] (12)
As Eq. (12) shows, Q and L allow the user to
place more or less emphasis on the feature error or the
control input; their selection will affect the stability
and response of the tracking system while there is not a
standard procedure for the selection of the elements of
Q and L. Moreover, because of the Jacobian’s time-
varying nature, it should be adjusted continuously,
which increases the computation expense. Another

disadvantage of the Jacobian is the presence of
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singularity, which will make the system with an inverse
Jacobian control law unstable.

To avoid the inverse calculation and singularity of
image Jocobian, the CMAC is used to implement the
nonlinear relation. Convergence velocity of the CMAC
neural network is much faster than that of artificial NN
with the back propagation (BP) algorithm, especially
when mapping a vector from a multi-dimensional space
to a smaller space. Control solution can be gained only
by training the CMAC with a small portion of samples.
the IBVS

complicated

Compared with shown above, system

calibration  and computation  are

transformed into simple neural network mapping.

3 CMAC Controller Design
3.1 CMAC neural network

The CMAC neural network is a neural network that
models the structure and function of the part of the
brain known as the cerebellum, which controls the
musculature system® . The CMAC is designed to
provide motor control for robotic manipulators. The
basic structure of the CMAC algorithm regarding its
function learning capability is illustrated in Fig.1.The
key portions of the CMAC algorithm are two mappings.

(i) Desired
CMAC function

S Input space Ic{asg AP(w)

» Input vector

/&

L1111

LT

Fig.1 Architecture of a CMAC neural network

The two mappings realize the nonlinear relation-
ship between input and output. The first one is the
mapping from input space S to conceptual memory AC.
The quantified input vector is defined by s; = {s;, 55,
.5, 1", which is mapped to ¢ memory addresses.
The mapped vector R, (which is also called the
receptive function) is defined by

R, = R<Si) = {r1(sg)’rz(sg)s""rc(si)“

(13)

The number of addresses mapped for a sample of
input space, ¢, is called the generalization size of the
CMAC. As Fig.1 shows, similar inputs excite many of
the same cells in the conceptual memory, thus produce

similar outputs, while different inputs will produce

different outputs.

The second one is the mapping from large
conceptual memory space into a smaller physically
realized memory space using hash code. Since the
CMAC is used to learn the control of a robot arm, only
a small portion of the input space corresponding to the
desired trajectory is used, allowing for the input space

to be hashed with a small possibility of collisions.
3.2 CMAC controller

Fig.2 is the block diagram of the visual servo the
control system with the CMAC. In the diagram, the
CMAC neural network and PD controller (the fixed PD
controller) are combined together in parallel. A similar
parallel implementation was first proposed by Miller for
their robotic control application® . The total control
signal to the end-effector is the sum of the CMAC
response and the PD response. The learning algorithm
uses the output of the PD controller to train the CMAC
neural network. The goal of the learning algorithm is to
minimize the PD control output, since the PD control
output is directly proportional to the error signal. The
CMAC will continue to learn until the system errors are
within the noise levels of the system“o'lu. Thus, the
learning algorithm is

Aw, = Bty — ) = B+ U (14)
where u,, 1s total control signal; uy,. is CMAC

response and up, is PD output.

Image processing
and features
searching

Fig.2 Block diagram of visual servo control using CMAC

The CMAC controller works as follows: the CMAC
input space is composed of desired image features
position vector X, of the end-effector. The whole
memory of the CMAC is initialized to zero. At the first
run, CMAC

end-effector is controlled by uy, entirely. At the same

response Ugy is zero, and the

time, the corresponding weights in the CMAC are
trained by up, as (14), so weights in memory are no
longer zero, thus in the later time, w#oy, and up, are
summed to control the end-effector. The learning speed
of the CMAC is very high. After several periods of
learning, the nearly

end-effector’s trajectory is

consistent with that of the target object. At this time,
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the end-effector is almost controlled by @y, while
Upp 1s near zero. With the CMAC neural network,
controlling while learning can be realized and real-time

performance is ensured.
4 Simulation
4.1 Visual servo control system

The configuration of the simulated system is shown
in Fig.3. The end-effector is actuated to move along
the x,y,z axes to track the moving object. The
objective of visual servo control is to map the error
signal in image space to the control signal in x,y,z
directions, which drive the end-effector to track the
target object moving in a random trajectory with an
average speed of 0.12 m/s. The workspace is a cuboid
with0 < x < 200 mm, - 100 < y < 100 mm, 0 < z
< 200 mm. To reflect the position change of feature
points adequately in the image plane induced by the
movement in workspace, two cameras are used. One is
parallel to the x axis and the other to the y axis. This
kind of configuration is based on x and y coordinates
of object obtained from two cameras, respectively,
which compose the input vector of the CMAC NN as
described in section 4.2. In this system, a Sony
XC-77RR black-and-white CCD camera is selected,
which contains 768(H) x 493(V) sensor elements of
size 11 ;.Lm(H) x 13 pm(V). The frame rate is 30
frame/s and the focus length is 50 mm. In this paper,
perspective projection model is used.

Target object

trajectory Workspace

Right camera

Vg 1000
i 1500 1500 o/

Fig.3 Configuration of simulated system (unit: mm)

Fig.4 shows the block diagram of the visual servo
control system using a CMAC NN and Kalman filter.
The Kalman filter is used to predict the visual features
position of both the target object and end-effector, and
then two windows of proper size are established around
in  which the
processed; the SSD method is used to search the

the predicted positions image is

feature points. The Kalman filter can also serve to
compensate the time delay caused by the image
acquisition and processing and save us precious time

[12]

for real-time implementation The principle of the

CMAC controller is described in section 3.2.

Kalman filter
Xi+llk+1

Windowing Yi+1
Camera andimage- | g, Features |-

processing | | searching

Fig.4 The visual servo control using CMAC and Kalman

predictor

4.2 Simulation results

In this paper, the program is run under Matlab 5.
3 or higher. Functions are written in C and are
provided as CMEX-functions for speed.

The state vector for a single feature element
consists of its position and velocity. We take the image
coordinate x, of the target moving in random trajectory
for example. The state equation is

P 1 T)[P: 7°/2

i | W A PR
where a, is the random, time-varying acceleration and
T is the sampling interval.

The measurement equation is

Y = Xp + V; (16)
where v, is random measurement noise.

Fig.5 shows the predicting process and the error
between predicted position and measured position. As
it shows, the curve of predicted position is near to that
of measured position, so it is applicable to use a
window of proper size around the predicted position to
search the feature point.

After image feature points are searched, tracking a
target object moving in random trajectory is simulated.
Input to CMAC NN is the desired position vector of the
end-effector image feature, i.e. position vector X, =
{0 X yld} of the target object image feature, where
Xig>%q,Ya are the feature coordinates in the image
planes of the left and right cameras. The generalization
parameter ¢ is 20 and the learning rate 8 is 0.5. Fig.6
shows the process of tracking a target object moving in
random trajectory and the tracking error.

As shown in Fig.6, the weights can be adjusted
on-line while off-line training is no longer needed, so
the preparation of a large number of samples is avoided

and the real-time performance is guaranteed. Another



62 Wang Huaming, Luo Xiang, and Zhu Jianying

—— Measured position
20 N, - Predicted position

Position/pixel
S

400 I 1 1 ]
0 50 100 150 200
Sampling point/cycle
(a)

Predicting error/pixel

~20}+
-30

1 1 1 ]
0 50 100 150 200
—40 Sampling point/cycle
(b)

Fig.5 The predicting process and prediction error
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Fig.6 Tracking object moving in trajectory and the tracking

error (unit: mm)

advantage is that the learning rate of CMAC NN is very
high,

controlling, the tracking trajectory is almost consistent

and after several periods of learning and

with the target object’s trajectory. At this time, the

output of the PD controller is near zero, which can be

seen from the tracing errors in x,y,z directions, and

the end-effector is almost controlled by the CMAC NN.
S Conclusion

We use the Kalman filter to predict the positions
of image features and then windows are created in
which feature points are searched. Using a windowing
technique, only small regions we are interested in are
processed, so precious time is saved for real-time
implementation. After feature points are obtained,
error signal is defined in the image space, then the
CMAC NN is used to map the error signal to the control
signal to avoid the inverse solution of image Jacobian.
Simulation results show that controlling while learning
can be realized using the CMAC NN and the CMAC NN
control scheme is proved to be a powerful tool for

real-time nonlinear visual servo control applications.
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