Journal of Southeast University (English Edition)

Vol.19 No.l Mar. 2003

ISSN 1003—7985

Development of a distributed and integratable manufacturing
execution system framework

Yang Hao' ~ Zhou Na'

Zhu Jianying'

Luo Xiang”

(" The Mech-Electronic Engineering Research Center, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

(* Department of Mechanical Engineering, Southeast University, Nanjing 210096, China)

Abstract:

Using remote method invocation (RMI) and a distributed object-oriented technique, this paper presents a

systematic approach to developing a manufacturing execution system (MES) framework, which is open, modularized,

distributed, configurable, interoperable and maintainable. Moreover, the design patterns for the framework are developed

and a variety of functional components are designed by inheriting appropriate patterns. And then an application is

constructed by invoking corresponding methods of related components. An MES system implementing the framework and

design patterns can be facilely integrated with other manufacturing applications, such as enterprise resource planning

(ERP) and floor control system (FCS) .
Key words:

With greater demand for high quality, low cost,
high performance products, manufacturers have to
reduce costs, cut production time, improve quality,
increase asset utilization, decrease inventory and
guarantee on-time delivery of their products. To
achieve these goals, manufacturing execution systems
(MES) emerged in the 1990’s.

The MESA international definition of MES is,
(MES) deliver

information that enables the optimization of production

« . .
Manufacturing execution systems

activities from order launch to finished goods. Using
current and accurate date, MES guides, initiates,
responds to, and reports on plant activities as they
occur. The resulting rapid response to changing
conditions, coupled with a focus on reducing non
value-added activities, drives effective plant operations
and processes. MES improves the return on operational
assets as well as on-time delivery, inventory turns,
gross margin, and cash flow performance. MES
provides mission-critical information about production
activities across the enterprise and supply chain via
bi-directional communications.”""

Many industries currently use an MES for
managing factory floor information and activities to
increase productivity and improve quality for the
advantages of MES systems . But the MES system is
very complex; it’s not that the code is necessarily

complex, but rather that the whole system itself is.

Received 2002-10-14.

Foundation item: The National Natural Science Foundation of China
(59990470) .

Biographies: Yang Hao (1975—), male, graduate; Zhu Jianying (cor-
responding author) , male, professor, zjyao@nuaa.edu.cn.

manufacturing execution system framework ; design pattern; distributed object-oriented ; remote method invocation

Therefore, most of the MES systems are monolithic,

insufficiently configurable and integratable, and
difficult to modify and expand.

Using remote method invocation (RMI), a distri-
buted object-oriented technique, this paper presents a
systematic approach to developing an MES framework,
which is open, modularized, distributed, configura-
ble, interoperable and maintainable. Moreover, the
design patterns for the framework are developed and a
variety of functional components are designed by
inheriting appropriate patterns. And then an appli-
cation is constructed by invoking corresponding
methods of related components. An MES system
implementing the framework and design patterns can be
facilely integrated with other manufacturing appli-
cations, such as enterprise resource planning (ERP)

and floor control system (FCS).
1 Basic Foundations

The design of the MES framework is based on a
number of foundations. These foundations are used to
develop the overall architecture. This paper introduces

the most important foundations as follows.
1.1 Distributed objects and RMI

Distributed objects are objects in the client/server
system. Distributed objects are packed as independent
pieces of code that can be accessed by remote clients
via method invocations. Clients do not need to know
where the distributed object resides or what operating
system it executes on; it can be the same machine or on

a machine that sites across a network.

Development of a distributed and integratable manufacturing execution system framework 65

Distributed objects have the inherent potential to
allow granular components of software to plug-and-play,
interoperate across a network, run on different plat-
forms, coexist with legacy applications through object
wrappers, roam on networks, and manage themselves
and the resources they control”’ .

To create a distributed object-oriented infrastruc-
ture, there are three standards: OMG’s common object
request broker architecture (CORBA), Microsoft’s
distributed component object model (DCOM), and
Sun’s Java remote method invocation (RMI)M . RMI is
the latest distributed computing technology broadly
used in distributed systems. In this paper, the RMI is
adopted to develop the infrastructure of the MES
framework. And the unified modeling language (UML)
model is used to express the MES Framework .

Java RMI technology, which is the part of the core
Java platform and is therefore everywhere, is the basis
of distributed computing in the Java environment. Java
RMI is created after broad acceptance of the Internet
and object-oriented design. RMI enables applications
running in different processes on different machines to
communicate with one another in a way that preserves
the object-oriented paradigm; thus it provides a
dynamic and flexible environment for building robust
distributed applications®®’

As Fig.1 illustrates, RMI architecture consists of
three layers: the stub/skeleton layer, the remote
reference layer and the transport layer. The boundary
at each layer is defined by a specific interface and
protocol; each layer is independent of the next and can
be replaced by an alternate implementation without
affecting the other layers in the system. The
application layer sits on top of the RMI system. A
remote method invocation from a client to a remote
server object travels through the layers of the RMI
system to the client-side transport, then up through the
server-side transport to the server. A client invoking a

method on a remote server object actually uses a stub

Application
Client Server
Stubs Skeletons
RMI system Remote reference layer

Transport

Fig.1 Java RMI system architecture
or proxy for the remote object as a conduit to the remote

object. The remote reference layer is responsible for

carrying out the semantics of the invocation, and the
transport layer is responsible for connection setup,
connection management, and keeping track of remote
objects residing in the transport’s address spacem .
Fig.2 illustrates the interaction of the RMI client
and server” : (D The RMI server creates an instance of
the remote object implementation and passes a
serialized form of its stub to the RMI registry with
which the stub is registered; @ The RMI client
attempts to get a handle on the remote object from the
registry; (3 The RMI registry returns a serialized copy
of the stub to the client that sequentially de-serializes
the stub to create an instance; @ The client calls one
of the remote object’s methods through the stub; ©
The stub contacts the skeleton within the server; ©
The skeleton invokes the method on the implementation
of the object; (@D The
implementation returns the result to the skeleton; ®
The skeleton returns the result to the client stub; ©
The client stub returns the result to the RMI client.

remote remote object

(Remote object implementation)
® 0]
R Skeleton) (%Stub)

@//@

Java RMI client JVM

olo
x A Java RMI client JVM
Java RMI registry ?

% Created as part of registration/export
..... %% Serialized and shipped via networking
Java RMI client JVM

Fig.2 Java RMI client, server, and registry interaction

1.2 The concepts of frameworks and design
patterns

A framework provides an organized environment
for running a collection of objects. It also provides
tools that let you construct components that are willing
to play by the framework’s rule of engagement. The net
effect is to amplify the benefits obtained at the module,
application and system level as well® .

Frameworks can offer simple patterns that guide the
collaboration of objects so that they can start to model
their real world. The framework objects collaborating
paradigm often reflects a design pattern that leverages
reusable object-oriented software. Design patterns are
descriptions of communicating objects and classes that
are customized to solve a general design problem in a
particular context. One person’s pattern can be another
person’s building block ™" .

There are many differences between framework
and design patterns as well as relationships; the main

aspects are as follows™”' ;

66 Yang Hao, Zhou Na, Zhu Jianying, and Luo Xiang

® A framework can contain several design patterns
but the reverse is never true.

® A framework can be embodied in code and used
directly. In contrast, design patterns, just examples of
code, must be implemented each time when they are
used.

® A framework always has a particular application
domain. In contrast, design patterns can be used in any
kind of application.

® [rameworks are what we need to get to business
objects and more intelligent components. Design
patterns can be used to document certain elements of
the framework design.

Manufacturers are shifting to framework-based
MES systems architectures as distributed applications
become mainstream. These architectures offer manu-
facturers improved connectivity, extensibility and

scalability of their MES faster 1T

development times by reusing application components,

components,

and a way to tie disparate heterogeneous environments

together using the power of the Web.

2 Development of the MES Framework

2.1 Constructing the abstract object model from
the real systems
The development of the MES framework begins

with collecting the domain requirements to construct
the abstract object model of the real systems.
Considering the interface between MES and ERP and
that between MES and FCS, a typical distributed
architecture for a manufacturing entity contains the
following requilrementsLz'8’10'llJ :

1) Common database: stores customer orders, job
assignments, equipment status, recipes, bills of
materials and engineering data, human resource (HR)
data and other resource data.

2) System manager: monitors and controls the
status of the whole factory.

3) Scheduler: is in charge of scheduling and
dispatching job assignments.

4) Equipment manager: monitors and controls
equipment.

5) Material manager: handles the movement of
AGVs, AS/RS, robots and other material .

6) WIP manager:
(WIP) .

7) SPC manager: handles the statistical process
control (SPC).

According to the above requirements, the abstract

tracks the work-in-process

object model of the real system is constructed, as

shown in Fig.3.

AbstractFactory
Labor Material Equipment WIP SPC
LaborManager MaterialManager EquipmentManager WIPManager SPCManager
Utility classes to
connect datebase
Common database
connections SystemManager Schedule

Fig.3 Abstract object model for the MES

2.2 Partitioning the abstract objects into com-
ponents

The abstract should be
systematically and methodically into components to
design an integratable MES that is highly distributed.

The system is partitioned into eight components

objects partitioned

according to the principle that different functional
modules will be grouped into different components.

They are: system management, schedule, equipment

labor

SPC management and

management, material management, mana-
gement, WIP management,
common database. Due to space limitations, this paper
doesn’t discuss the WIP and SPC management
components. The other six components are depicted in
Fig.4(a). Labor, equipment, and material, three key
elements of a factory, are similar and can be defined as
system resources. Their management components have
the same design pattern shown in the latter subsection.

Therefore, these three components are also considered

Development of a distributed and integratable manufacturing execution system framework 67

as resource management components, as shown in Fig.

4(b).

Labor Equipment Material
Mgmt. S Mgmt . Mgmt.
\ N =~J /f\ Y~ 7 A

N |
S <
@ % System \g Schedule
- >

Common database Mgmt

Resource
Mgmt.

Fig.4 Partitioning abstract objects into components

2.3 Defining the MES framework messages

The MES framework messages are defined as in
Fig.5 according to the principle that only framework
messages are allowed to pass into and out of the MES

framework components. The resource management com-

DispatchOrder/CancelOrder

ponents will accept Initiate, StartUp, ShutDown and
StandBy messages from the system manager and reply
EventReport and AlarmErrorReport messages; the
scheduler will accept DispatchOrder and CancelOrder
from the system manager and reply OrderDoneReport to
it; at the same time, the schedule will send
DispatchJob-CancelJob to

components and accept JobDoneReport message from

resource management
it; the system manager also provides a CreateOrder
message for the outside world, as shown in Fig.5(a).

The messages among the resource components are
depicted in Fig.5(b) . There are various requestresponse
messages which are sent and replied to each of the
components. The common database component provides
the data processing messages, such as storing, updating
and getting data, as shown in Fig.S(c).

Through these messages, the MES system can
monitor the product activities, and transfer or feed
back the operational information rapidly. After the
managers/users receive this information, they can make
a rapid response, such as adjustments, new decisions,

and so on, to various changing conditions.

4

/ Initiate
StartUp EventReport
CreateOrder Silal;}(li)gyn AlarmErrorReport

Material Mgmt

Material arrived Material me

DemandService

OrderDoneReport

DispatchJob
CancelJob

Resource Mgmt

JobDoneReport

UpdateData RetrieveData

StoreData DeleteData

Equipment Mgmt.

(b)

ProvideService

Fig.5 Defining the MES framework messages

2.4 Developing design patterns for the MES
framework

The fundamental structure of the MES framework
is that the system manager controls several component
managers and a component manager manages several
resources. Therefore, there is a design pattern for the
system manager and resource managements. The design
pattern of the scheduler is a different one. Due to
space limitations, this paper just describes the former

with UML" , as shown in Fig.6.

The MESAbstractObject is the abstract superclass
of the MESManager and MESResource. It specifies the
common attributes and operations for these two sub-
classes to inherit. The MESManager and MESResource
inherit all members of the superclass and extend their
own attributes and operations. The MESManager mana-
ges several MESResource instances by MESResource-
Similarly, the MESComponentMana-
ger, a subclass of MESManager, processes the jobs of
an MES Resource by MESJobHandler.

Collection class.

Yang Hao, Zhou Na, Zhu Jianying, and Luo Xiang

MESAbstractObject
_ parent: MESAbstractObject
_ name: String
_ status: String
MESResource _ dsscription: String MESManager
_ parameter: Vector startUp() _ resCol: MESResourceCollection
startRunning() ﬂ shutDown () registerResource()
abortRunning() ?rtiltlli?ey(()) removeResource()
)) stertOperation() checkResomce()
esource .
MESAbstractObject () o rrorReport()
getResourceCoHection()
MESResourceCollection MESManager ()
_ resourcelist: Vector /]\
queryResourceStatus()
T getActiveResources() MESComponetManager
VESR initiateResource() _ jobHandle: MESJobHandler
_ Tesource: esource addResource() dispatchJob()
addJob() deleteResource() cancelJob()
g:gtabb;)ﬂ) verifyResource() ' completeJob()
" tAa]}Ja:)Illa . F) MESResourceCollection() getJobHandl er()
MESJobHandler() MESComponentManager ()

Fig.6 A design pattern for the MES framework

2.5 Developing the MES framework architecture

After all of the components and design patterns

have been developed, the backbone of the MES
framework is established, as shown in Fig.7.
The presentation tier of the MES framework arch-

Application server

Web server I I
Brower | http}https RMI-TICP 1 Existing
| }»| legacy
__ protocol | sSystem,
bbb - HloP Scheduler v ERP, eto.
Brower | http s - -
client o IE T |
| , |
| =
: Common
RMI-TIOP Ly
TR o
I oL

Fig.7 MES framework architecture

itecture can be an HTML or Java applet browser client
that connects to a web server by http/https protocol.
The web server communicates with the application
server by RMI or RMI-IIOP standard protocol described
in subsection 1.1. The client can also use a Java
application that communicates directly with the
server by RMI or RMI-IIOP. The

application server, also called the middleware tier or

application

logic business tier, is the core of the MES framework
architecture. It can access the database by JDBC and
integrate with the legacy system, existing system, and
ERP system using proprietary protocols.

This MES framework is a distributed, inte-
gratable, and open architecture. And it is expandable.
When a new component needs to be added this system,
one may simply follow the component design patterns
mentioned in the above subsections and he will have a

highly pluggable component. Thus the component will

easily be deployed into the application server.
3 Application Example

Using the MES framework architecture mentioned
above, we rapidly developed a web based distributed
and integratable MES system in 8 months (usually, to
develop and deploy an MES system requires 12 — 24
months) to exchange information and manage
transactions in the plant. This system uses Tomcat 4.0
as the web server, Websphere 4.0 as the application
server, and Oracle 8i as the database. The server end
operation system can be Windows NT 4.0/Windows
2000 Server or an other server operation system; and
the client end operation system can be Windows
98/2000 or other client operation systems. This MES
system focuses on quick response to changing
conditions, improved communication capability with

ERP system, monitor production to control operations

Development of a distributed and integratable manufacturing execution system framework 69

within desired performance parameters, and a decrease
in the gap between ERP and FCS. It dramatically
extremely increases the productivity, improves the
quality, reduces the cost, and guarantees on time
delivery.

4 Conclusion

Applying the distributed object-oriented techn-
ique, an approach to develop an open and integratable
MES framework based on RMI industry standard was
proposed. Firstly the objects of the real system were
abstracted; then these objects were partitioned into
components, and their messages and design patterns
were defined; finally, the MES framework architecture
was developed from these fundamentals. Following the
design patterns, a new component is integratable into
the MES framework in a plug-and-play fashion.

From the description and application example, it
is believed that the proposed approach to develop an
open and integratable MES is indeed a viable and
efficient method.

References

[1] MESA International. MES explained: a high level vision [EB/
OL]. http://www. mesa. org/whitepapers/pap6. pdf. 1997 —
9/2002-10-8.

[2] Feng S C. Manufacturing planning and execution software in-
terfaces [J]. Journal of Manufacturing Systems, 2000, 19
(1:1-17.

[3] Orfali R, Harkey D, Edwards T. The essential distributed ob-

Jects survival guide [M]. New York, NY: John Wiley, 1996.
1-42, 220-342.

(4] Campbell A T, Coulson G, Kounavis M E. Managing com-
plexity middleware explained [J]. IEEE IT Professional,
1999, 1(5): 22-28.

[5] Sun Microsystems, Inc. Java remote method invocation — dis-
tributed computing for Java [EB/OL]. http://java. sun. com/
marketing/ collateral/javarmi . html.2001 - 3 - 11/2002 - 10— 9.

[6] Cattell R, Inscore J. J2EE™ technology in practice — build-
ing business applications with the Java™ 2 platform , enterprise
edition [M]. Boston Massachusetts: Addision-Wesley Publish-
ing Company, 2001.1 - 30.

[7] Sun Microsystems. Java™ programming language workshop
SI-285 Instructor guide[M]. California, CA: Sun Microsys-
tems, Inc, 2001. 1-22.

[8] Cheng F', Shen E, Deng J Y, et al. Development of a system
framework for the computer integrated manufacturing execution
system [J]. I NT J Computer Integrated Manufacturing ,
1999,12(5) : 384 - 402.

[9] Gamma E, Helm R. Design patterns : elements of reusable ob-
Jectoriented software [M]. Boston Massachusetts: Addision-
Wesley Publishing Company, 1995. 1-29.

[10] MESA International. The controls layer: controls definition &
MES to controls data flow possibilities [EB/OL]. hitp://
www . mesa. org/ whitepapers/pap3. pdf. 2000 - 2/2002 - 10
-9.

[11] MESA international. MES functionalities & MRP to MES data
flow possibilities [EB/OL] . hitp://www. mesa. org/whitepa-
pers/pap2. pdf. 1997 —3/2002 — 10 - 10.

[12] Boggs W, Boggs M. Mastering UML with rational rose [M] .
Alameda, CA: SYBEX Inc, 1999. 13 -30.

— BN AERNFHERITRERIERNT R

7B R &

PEY

LA R

(" BFMEMERFIM LT ZRFEI, &% 210016)
CHRAXENHKIELR, &7 210096)

m =

KA & @) oA KT R o9 2420 R (RMDAE AR, 3B T — A PR T AKX Bk 45 A

KTEE TERATHEPORERATERL (MES)IER) A%k FIat, A MESER L T 48
6 TR AR X R LA AR AR X e R A K FF R R AR B AL 64 T SRR T VA R R R AR L w b AR,
#9 MES A 245 e 951 8 5 #o 55 ERP,FCS 4 Rt 1% 2 o404 %, .

KER FRIITRRER; BOHHEX; Baoh Xt g ; 2R EEA

hE 4SS THI66; TP393

