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Abstract: In this paper, we investigate the growth of transcendental entire solutions of the following algebraic differential
equation a(z)f/z + (bz(z)f2 + b, (2)f+ by (2))f = (l3(z)f3 + dz(z)fz +d, (2)f+ dy(z), where a(z), b;(z)
(0<i<?) and d; (z) (0<j<3) are all polynomials, and this equation relates closely to the following well-known algebraic
differential equation C(z,w)w’> + B(z,w)w’ + A(z,w) =0, where C(z,w) =0, B(z,w) and A(z,w) are three poly-
nomials in z and w. We give relationships between the growth of entire solutions and the degrees of the above three polynomials
in detail .
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1 Introduction and Main Results

Firstly, we introduce some terminologies. Let f be a transcendental entire function and write

) = D as

Then, use the following standard notations for maximum modulus M(r,f), maximum term ¢(r,f), the
central index v(r,f), order p(f) and lower order #(f) of f, respectively.
M(r,f) = max( |f(z)| szl = 1)
(raf) =

v(r,f) = sup(n: ‘ a,

n
max ‘anz |
Z‘ =T

o= ¢(r,f)

. b '
0= p(f) = lirg SuploglogM(r f)

logr
B . clog logM (r, f)
po= p(f) = lim inf Togr

In this note, we investigate the growth of the entire solution of the following nonlinear algebraic differential
equation:

a(z) 7+ (b (2)f* + by(2)f + bo(2))f" = ds(2)f + dy(2)f* + di(2)f + dy(2) (D
where a(z), b;(z) (0 < i <?2) and d]-(z) (0 < j < 3) are all polynomials. Why do we only choose to consider
this type of algebraic differential equations? The reason is Eq.(1) relates closely to the following algebraic
differential equation:

Clz,w) w? + Blz,w)w + A(z,w) =0 (2)
where C(z,w) %0, B(z,w) and A(z,w) are three polynomials in z and w'"' . Ishizaki and Steinmetz >’ studied
this type of algebraic differential equation in detail and got many interesting results. We refer readers to Refs.[4 —
6] for the introduction of complex differential equations theory.

In general, if we let p(u,,u,,us;) be a polynomial in all of its arguments u,, u, and u;, then the growth of
the meromorphic solutions of the following algebraic differential equation are known:

plz, f, f') =0 (3)

In the 1950’s, Goldbergm proved the following theorem.
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Theorem 1  All the meromorphic solutions of Eq. (3) are of finite order of growth.

In 1983, Strelitz® got the following theorem.

Theorem 2 Every transcendental entire solution of a first-order algebraic differential equation with rational
coefficients has an order no less than 1/2.

In 1996, Haymanm obtained the following result.

Theorem 3 let d = max(deg(a), deg( bo) s deg(b]), deg( b,), deg( d,), deg( d,), deg( d,), deg( d;)), and if
b,(z) = 0, then any entire solution of (1) has finite order p(f) < max(2d, d +1).

Recently, Liao and Yang'"' showed the following thorem.

Theorem 4  If deg(d,(z)) 5 deg(a) — 1 in (1) and f(z) is a transcendental entire solution of Eq. (1),
then p(f) = 1.

In this article, we shall show the following result.

Theorem 5 Let f be a transcendental entire solution of (1).

1) If dy(z) = 0or by(z) =0, deg(d;(2)) > deg(b,(z)), then p(f) = deg(d;(2)) — deg(b,(z)) + 13

2) If d;(z) =0 and b,(z) = 0.

Subcase 1 If a(z) = 0, deg(b,(z)) < deg(d,(z)), then p(f) = deg(d,) — deg(b,) + 1;

Subcase 2 If d,(z) = 0, deg(b,(z)) > deg(a(z)), then p(f) = deg(b,) — deg(a) + 1;

Subcase 3 If b,(z) = 0, deg(a(z)) < deg(d,(z)), then o(f) = (deg(d,) — deg(a))/2 + 1;

Subcase 4 If a(z) = 0, b,(z) = 0 and d,(z) = 0, deg(b,) = max(deg(a),deg(b,), deg(d,)), then
o(f) = deg(b,) - deg(a) + 1;

Subcase 5 If a(z) =0, b,(z) = 0 and d,(z) = 0, deg(d,) = max(deg(a), deg(b,), deg(d,)), then
o(f) = min((deg(d,) — deg(a))/2 + 1,deg(d,) — deg(b,) +1).

3) Otherwise /z(f) < 1 and p(f) = 1/2.

2 Some Lemmas

Lemma 1 If f is an entire function of order o, then

- i sup 08" () log” logt E(r, f)
o= AR log r i logr (4)
= lim inf 2B YL plog” log” £(r,f)
roe logr r>o log r

Remark The proof of the first equality of the above lemma can be found in Ref. [4] and [5]. By using
similar methods to those in Ref.[4], we can also prove the second one.

Lemma 2" Let f be a transcendental entire function, and let 0 < § < %

Suppose that at the point z with | z| = r, the inequality | f(z)| > M(r,f)v(r,f)”""** holds. Then there

exists a set F' — R" of finite logarithmic measure, i.e., [dt/t < + %, such that

£ = (2D) A e (s)
holds for all m = 0 and all r &F.
3 Proof of Theorem 5

Using theorem 1 and lemma 1, we know that there exists a positive number C > 1 such that, for sufficiently

large r,
log" v(r,f) <C
log r
S0
u(rr,f) < s (6)

Now we choose r, &F and z, such that

1) r, > ®© as n—> ®;
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2)

4

n

=T,, ‘f(zn)‘ = M(rn’f);
f(z)

") exists.

3 lim T,

From lemma 2, we have
f/(zn> _ V(rn’f)
fz) = g

Now we rewrite (1) as
(4.0 = 0 ) = [a () + 0.0 53 4 0o F55 - a0 -

dl(z) do(z) ] 1
SG) T (f(2)* f(2)
From (6), (7), and (8), for any n = 1, we have

(L) oy d )

f(z,)

where M and m’ are two positive constants.

Note the fact that lim lo M(tr, )
-

r—>o

(1 +0(1)) (7)

(8)

f'(z)
+ bO(Zn> (f(zn>)2 - dz(z,,) -

d](z,,) _ do(z,,)
fG) (f(z))?

< M (9)

= o for any natural number ¢, then from this, (8), and (9), we have

tin| 4,2 - o0 D] 0

Two cases are to be considered.

Casel d;(z) =0or b,(z) = 0.

Subcase 1 deg(d;(z)) < deg(b,(z)).

In this subcase, without loss of generality, we can suppose that
diy(z) = d2 + d, 27"+ + diz + d,
b,(z) = b + bq_]z(rl + 4+ bz + b

(10)

Combining this with (10), we get

—-p+ - /(z”>
, + o 4 blz,,p 1 + bUz"”)j;‘(zn) _)O

1 _ _
dp + dp—lzn, + 7+ d()znp - (quz ! + 7+ b

as n —> ©, therefore
i £ )
n—>® f( z, )

From this and (7), we have v(r,,f) < er, for a sufficiently large n and for some positive constant ¢ > 0. So,

=0

by using lemma 1 and theorem 2, we get /u(f) < 1 and p(f) = 1/2.
Subcase 2 deg(d;(z)) = deg(b,(z)).
One can see immediatedly that

dp + dp-lz;l + o 4 d()z;p _ (bp + bp—lz;l + o+ b()zp)fj‘(((zzlz)) >0

as n —> %, hence

- S (z)
fim ];(z") =a#0
for some constant @ . It follows from this, and (7) that, for a sufficiently large n,
v(rn,f) < (lal+ e)r,
here e (> 0) is a constant, so, similarly we have p(f) < 1 and p(f) = 1/2.
Subcase 3 deg(d;(z)) > deg(b,(z)).
Then

. > 1 1 1\f"(z)
dp + dp,lzn] + °° + doznl - bq L4 + bq—l W + "+ b() Z) f(z”) ]4’0

as n — ©, and this implies that
f/ ( Z" )
/(z,)

~ 27 Tas p—> ®
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Therefore, from this, (7), and lemma 1, we have that

p(f)=p-q+1
Case2 d;(z) =0and b,(z) =0but a(z) == 0or b,(z) == 0or d,(z) = 0.

Then (1) becomes
a(z) 72 + (b, (2)f + by(2))f" = dy(2)f* + d\(2)f + dy(2) (11)

When substituting z with z, in (11), we can rewrite (11) as

f(z,) f(z,) fz) f(z,) 1f(z,)
Similarly, we have
tinl a0 (G25) + n0 G2 - aa] = 0 (12)

Subcase 1 a(z) = 0.

In this subcase, when using the arguments as in case 1, we can get that
1) If deg(b,(z)) = deg(d,(z)), then p(f) < 1 and p(f) = 1/2;

2) If deg(b](z)) < deg(dz(z)), then p(f) > deg(dz) - deg(bl) + 1
3) If deg (b,(2)) > deg(d,(z)), then (f) < 1 and p(f) = 1/2.
Subcase 2 d,(z) = 0.

In this subcase, similarly

1) If deg(b,(2)) = deg(a(z)), then px(f)
2) If deg(b,(z)) > deg(a(z)), then p(f)
3) If deg(b,(2)) < deg(a(z)), then p(f)
Subcase 3 b,(z) = 0.

In this subcase, by using the same arguments as in case 1, we have that

1) If deg(a(z)) = deg(d,(z)), then £(f) < 1 and p(f) = 1/2;

2) If deg(a(z)) < deg(d,(z)), then p(f) = (deg(d,) — deg(a))/2 + 15
3) If deg(a(z)) > deg(d,(z)), then y(f) < 1 and p(f) = 1/2.
Subcase 4 a(z) = 0, b,(z) = 0 and d,(z) = 0.

< 1land p(f) = 1/2;
> deg(b,) - deg(a) + 1;
< 1 and p(f) = 1/2.

1) If deg(a) = max(deg(a), deg(b,), deg(d,)), then (12) yields }LIE jf,((zjn)) =0, so u(f) <1 and

o(f) = 1/2;

2) If deg(b,) = max(deg(a), deg(b,), deg(d,)), then (12) yields ];((ZZ”)) o platp-dele) o o(f) =
deg(b,) — deg(a) + 1;

3) If deg( d,) = max(deg(a), deg(b,), deg(d,)), then (12) yields

f/(zn> r(deg(d2)7deg(u)>/2 f (zll) - rt]lleg(dz)fdeg(bl)

fz) — C G

p(f) (deg(d,) — deg(a))/2 + 1 or o(f) = deg(d,) — deg(b,) + 1

Now the proof of the theorem 5 is complete.
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