Journal of Southeast University (English Edition)

Vol.19 No.2 June 2003

ISSN 1003—7985

A method for publishing relational schema into DTD

Liang Zuopeng

Wang Xiaoling

Xu Lizhen Dong Yisheng

(Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

Abstract:

This paper focuses on exporting relational data into extensible markup language (XML). First, the

characteristics of both relational schemas represented by E-R diagrams and XML document type definitions (DTDs) are

analyzed. Secondly, the corresponding mapping rules are proposed. At last an algorithm based on edge tables is presented.

There are two key points in the algorithm. One is that the edge table is used to store the information of the relational

dictionary, and this brings about the efficiency of the algorithm. The other is that structural information can be obtained from

the resulting DTDs and other applications can optimize their query processes using the structural information.

Key words: XML; DTD; relational database; XML schema

Extensible markup language (XML)" is fast
emerging as the dominant standard for representing and
exchanging data on the Internet. An XML document
consists of nested element structures, starting with a
root element. Element data can be in the form of
attributes or sub-elements. In order to be exchanged
conveniently, XML documents may conform to some
kind of document type definitions (DTDs)m , which
are essentially schemas for XML documents. In fact,
there are already several industry proposals to
standardize DTD. Despite the excitement surrounding
XML, it is important to note that most operational
business data, even for new web-based applications,
continue to be stored in relational database systems.
This is unlikely to change in the foreseeable future
tools, and

because of the reliability, scalability,

performance associated with relational database
systems. Consequently, if XML is to fulfill its
potential, some mechanism is needed to publish

existing relational data in the form of XML documents.
There are already many works addressing this
problem, for example, the research work of Refs. [3 -
5] concentrates on the publishing problem and
addresses several of the key difficulties in the problem.
However, in real application circumstances the data in
a relational database is huge and applications usually
use only a very small fraction of it. It is more important
into DTDs.
query and

to transform the relational schemas

Consequently other applications can
exchange the exact part of data more efficiently. In this
paper, we address the problem of publishing relational

schemas into DTDs. First, we analyze both the

Received 2002-08-29.
Biographies: Liang Zuopeng (1973—), male, graduate; Dong Yisheng
(corresponding author) , male, professor, ysdong@seu.edu.cn.

relational schema and DTD in detail. Then we discuss
how a relational schema can be mapped into a DTD.
Since we use an E-R diagram (ERD) and a DTD graph
as intermediate transforming representations, our
mapping rules are simple and straightforward. At last,
an algorithm based on an edge table is presented.

The rest of this paper is organized as follows. In
section 1, we analyze the -characteristics of the
relational schemas represented in ERDs and those of
DTDs. In section 2, several transformation rules are
presented and in section 3 we put forward an efficient
algorithm. Section 4 concludes this paper and proposes

future work.

1 Relational Schema and DTD

A relational schema or just schema, written as
R(A,, A,,--*,A,), is a relation name and a list of
attribute names. The schema describes the organization
of the possible relations. An individual relation is said
to be an instance of a relational schema.

An example of a relational schema is shown as
follows.

® Customer (id: integer, name: varchar (20));

® Account (id: varchar (20), custid: integer,
acctnum;: integer);

® PurchOrder (id: integer, custid:
acctid: varchar(20), date: varchar (10));

® [tem (id: integer, poid: integer, desc: varchar
(10));

® Payment (id: integer, poid: integer, desc:
varchar (10)).

The customer table records the information of

integer,

customers while the account table and the purchorder
table hold the account information and the purchase

information of customers, respectively. The two tables

118 Liang Zuopeng, Wang Xiaoling, Xu Lizhen, and Dong Yisheng

are associated with the customer table through foreign
keys. The item table and payment table are associated
with purchorder table in the same way.

Relational schemas are usually represented by
ERDs. All the entities, attributes, domains, primary
keys, foreign keys, constraints, relationships, also
notes and other physical and logical data, can be
laid-out in a transparent order. Using the graphically
well-arranged ERD, database structures can be easily
created and maintained. The corresponding ERD of the
relational schema shown as an example is presented in

Fig.1.

Customer

PurchOrder

Fig.1 The E-R diagram describing relations

® An entity is represented by a rectangle labeled
“entity”;

® An attribute is represented by an ellipse labeled
“attribute” ;

® A relation is represented by a rhombus labeled
“relation” and the cardinality constraints are labeled at
the two ends of the edge;

® A primary attribute is labeled with an underline.

XML documents may have DTDs to define their

structure and constraints on them. DTD allows users to
specify the set of tags, the order of tags, and attributes
associated with each tag. A well-formed XML document
that conforms to its DTD is called valid. DTDs are not
mandatory for XML documents. However, if XML
documents conform to a DTD, it is convenient for
the XML

documents. So we expect that XML documents conform

applications to manage and search
to some DTDs. It is just like other data management
systems, DTDs describe a schema for a set of XML

documents. The function of DTD is similar to that of

relational schema in relational databases or class
If an XML

document conforms to a DTD, then it can be checked

definition in object-oriented systems.

valid or not by a sparser. A DTD can be declared inline
in your XML document, or as an external reference.

We define a DTD graph to describe the logical and
structural information among the elements in a DTD.
Its nodes represent elements, attributes and operators
in DTD. Each node representing an individual element
appears exactly once in the graph, while other nodes
representing attributes and operators appear as many
times as they appear in the DTD. The formal definition
is as follows.

Definition 1 Graph = (N,E), where N =
{Element | Attribute | Operator} , and E denotes
directed edges from node to node and Operator = { *
| +12}. The semantic of operators is as follows. “ *”
means zero or more, + means one or more and ‘7"
means zero or one. The DTD graph of the example is
shown in Fig.2.

2 Transformation Rules

We can draw a conclusion from the analysis above
that both relational schema and DTD are used to offer
constraints on data. However, they differ from each
other dramatically. The relational schema consists of
domains and attributes, and relational data is a set of
tuples which are composed of atomic attributes. In
contrast, DTDs consist of elements and attributes,
which allow set values and nesting relationships
between elements. All these differences make the
exportation of relational data into XML difficult. It is
necessary to find some bridges that help to overcome
the gap between relational data and XML. We consider
the ERD as a good candidate. It is obvious that if the
relational schema is represented with an ERD, the
schema can be easily mapped into DTDs. That is, an
entity in ERDs corresponds to an element node in DTDs
and a relation corresponds to an operator node.
Attributes can be mapped directly. The mapping rules
are presented as follows:

Rule 1 Transformation of entities: each entity in
ERDs will be transformed into an element in DTD
graphs with the same name.

Rule 2 Transformation of attributes: each
attribute in ERDs will be transformed directly into a
required attribute node in DTDs. If the application
does not care about the order of elements, it is not

necessary to transform the id attribute.

A method for publishing relational schema into DTD 119

Customer
type: element

Account type: element

Name type: attribute ‘

Accounts type: element

‘Purchorders type: element

*
Type: operator

'

| Account type: element ‘

/

*
Type: operator

'

‘ Purchorder type : element

M\

Acctnum type: attribute Items type: element

Payments type: element Purdate type: attribute

*
Type: operator

*
Type: operator

%

+

I Item type: element ‘ ‘ Payment type: element ‘

!

!

‘ Desc type: attribute ‘ I Desc type: atiribute ‘

Fig.2 A DTD graph describing a customer relation

Rule 3 Transformation of relations: each rela-

tion will be transformed into an operator element node.
3 Transformation Algorithm

We design an algorithm to publish a relational
schema into a DTD using the transformation rules
mentioned above. We first transform and store the rela-
tional schema in an edge table for the purpose of
simplicity of implementation. The edge table storing the
ERD information of Fig.2 is shown in Tab.1. Id is used
to record the order of nodes in ERDs, and Sid is the
edge’s source node. Similarly, Did is the edge’s
destination node. The Name and Type domain are used
to record the node’s name and type, respectively. We
define three types of nodes here, they are: Entity,
Attribute and Relation.

Tab.1 Edge table storing the customer relation

Id Sid Did Name Type
1 0 Null Customer Entity
2 1 Null Name Attribute
3 1 Null Account Entity
4 3 1 Accounts Relation
5 3 Null AcctNum Attribute
6 1 Null PurchOrder Entity
7 6 1 PurchOrders Relation
8 6 Null PurDate Attribute
9 6 Null Item Entity
10 9 6 Ttems Relation
11 9 Null Desc Attribute
12 6 Null Payment Entity
13 12 6 Payments Relation
14 12 Null Dese Attribute

3.1 Algorithm description

Input: edge table storing the information of the
relational schema.

Output: a DTD file.

Step 1 Create a text file.

Step 2 Get the string from the input edge table.

Procedures used to get the string are as follows:

D Locate the root record, that is, a record whose
Sid domain is 0;

@ Find all the entities whose Sid is the Id of the
root entity and add them to the queue recording the
information of the child entitities of the root record.
Transform all the entities using transformation rule 1;

@ Find all the attributes whose Sid is the Id of the
root entity and transform them using transformation rule
2;

@ Find all the operators whose Sid is the Id of the
root entity and transform them using transformation rule
3;

© Process the child entities iteratively as ©,®),
and @ till no new child entities are found.

Step 3 Write the string achieved from step 2 into
the text file.

Evidently, the time complexity of our algorithm is
O(n), where n is the number of nodes comprised in

the ERD.

120 Liang Zuopeng, Wang Xiaoling, Xu Lizhen, and Dong Yisheng

3.2 An example

We apply the algorithm above to transform the
relational schema shown in Fig.1. The DTD file
customer. dtd obtained from our algorithm is shown as
follows.

(1ELEMENT Customer (Accounts, PurchOrders))
(VATTLIST Customer Name CDATA # REQU]RED>
(1ELEMENT Accounts (Account) %)

(1ELEMENT Account EMPTY)

(VATTLIST Account AcctNum CDATA # REQU[RED>
{VELEMENT PurchOrders (PurchOrder) *)
(1ELEMENT PurchOrder (Items, Paymenls)>
(VATTLIST PurchOrder PurDate CDATA # REQUIRED>
(1ELEMENT Items (Item) *)

(1ELEMENT Item EMPTY)

(VATTLIST Item Desc CDATA # REQUIRED>
(VELEMENT Payments (Payment) *)

{1ELEMENT Payment EMPTY)

{VATTLIST Payment Desc CDATA # REQUIRED>

4 Conclusion and Future Work

XML is rapidly emerging as the dominant standard
for exchanging data on the World Wide Web, making
the ability to publish data as XML increasingly
important. In this paper, we have studied the
characteristics of both relational schema and XML
DTD. We proposed transformation rules using ERDs
and DTD graphs and presented an algorithm based on
these rules. By storing relational schema information in
an edge table, the transformation process is efficient
and straightforward.

Possibilities for future work include establishing

standard DTDs, storing XML data economically, and
querying XML data efficiently. We believe that the
approach outlined in this paper can be adopted in the
optimization of querying XML data with XQuery® .
Next, we will focus our research on optimizing XQuery
over relational data using DTDs achieved from our

approach.
References

[1] Bray T, Paoli J, Sperberg-McQueen C. Extensible markup
language(XML) 1.0 [EB/OL]. http: //w3. org/ XML, 2002-
08-15.

[2] Bosak J. W3C XML specification DTD [EB/OL]. http://
w3. org/xml,2002-08-15.

[3] Deutsch A, Fernandez M, Suciu D. Storing semi-structured
data with STORED [A]. In: SIGMOD Conference[C]. Dal-
las, Texus, 2000.

[4] Florescu D, Kossman D. Storing and querying XML data using
and RDBMS [J]. IEEE Data Engineering Bulletin, 1999, 22
(3):27-34.

[5] Jayavel Shanmugasundaram. Relational databases for storing
XML documents: limitations and opportunities [A]. In:
VLDB Confererwe[C]. Edinburgh, Scotland, 1999.

[6] Don Chamberlin, Daniela Florescu, Jonathan Robie, et al.
XQuery: A query language for XML W3C working draft[R].
Technical Report WD-xquery-20010215, World Wide Web

Consortium, 2001.

—MXEZFEXH DID K77

RAE M

Eopih

Wi FRA

(Rem Xttt 24, dw 21009)

W E RBTHATARGXZEXG DID KA k. E4H T X ZBEXF DID 694546
A b BT EMI RGN . KRG, B TR TARMER K. RRXAMET LT

AT EA R T ARG BT AT R0 2 AR5

X HZBBERX LA A DID L#)z,

b 5 R sk T VAR R DTD B 61408 4 #9428 30 % A B FAT AL B 19 .

X§8iE XML; DID; # % 4038 & ; XML A X,
FESRS TP39

