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Robust adaptive dynamic surface control
for nonlinear uncertain systems
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Abstract:  We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric
uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional
backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass
filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity
arising due to the “explosion of terms” that makes other methods difficult to implement in practice. The combined robust
adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a
singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed
by the method.
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A major contribution to the control of uncertain nonlinear systems, particularly those systems that do not satisfy
matching conditions, is the use of “backstepping” methods'’. Many results have appeared in Refs. [1 — 4].
However, traditional backstepping algorithms suffer from an “explosion of terms” due to the necessity to perform
repeated differentiations of nonlinear functions. A procedure similar to backstepping, called multiple surface
sliding control (MSS)™ | was developed to simplify the controller design of systems where model differentiation
was difficult. Based on Refs. [5,6], Refs.[7,8] introduced dynamic surface control (DSC) that overcomes the
problem of explosion of terms associated with the backstepping technique and the problem of finding derivatives of
desired trajectories for the i-th state for the MSS scheme. So far,the research has not been carried out on robust
adaptive control of a class of nonlinear systems with parametric uncertainties and disturbances by the DSC method.
Hence, based on the above literatures, this paper studies the robust adaptive DSC problem of a class of nonlinear
systems with parametric uncertainties and disturbances and designs a robust adaptive tracking controller. The
controller designed guarantees the semi-global stability of the closed-loop systems and the output tracking of a given

desired trajectory.
1 Problem Formulation

Consider the following uncertain nonlinear system:
Xy = % +f1<f1) +0,8.(x)) + pl(f|>w1
Xy = %3 +f2<fz) + 0,$,(x,) + Pz(fz)wz
(1)
%, = u+f,(x,)+ 03, (x,)+p(x)w,
Y = %
where ¥, = {x,,"*,x,{" € R'is the state; u € R is the control input; 6; € R is an unknown constant parameter;

w; € R is the external disturbance with ‘ w; | < a;, a; is a positive constant; $,(x,;) and p,(x,) are known C'
functions, f;(X,) is a smooth function with ;(0) = 0,1 < i < n.
We refer to x,, as a feasible output trajectory in the desired ball of radius r*', if

2 dufl 2
Xl + (dx“) + ot ( dtnfld) < Ko(r)
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where K,(r) > 0.

The objective of this paper is to design a robust adaptive dynamic surface controller for the nonlinear system

(1) which guarantees output tracking of the desired feasible trajectory x,,.

Throughout this paper, U; is the estimate of the unknown parameter 0,, i = 1,***,n.

2 Controller Design

The design procedure for the robust adaptive dynamic surface controller is described below. Let the error in

tracking a desired trajectory x4 be S,
Si = 2 - xyy
X2 is chosen to drive S, — 0,
ai S\ p;
o = P
X2 = — K, S, —fl(xl) - 1913{’1(-‘71) - e + Xyq
where € is an arbitrarily small positive constant which will be chosen later.
Filtering y,, x, is obtained.
ToXyg + Xog = Y2> %54 (0) = Xz(o)
Define the second surface to be
S, = x4 — xy
We choose y; to drive S, =0,
a% SzP%
X3 = — K, S, —fz(f2> - 0,%,(x,) - e + Xy
and obtain x,, by filtering y,,
Tadiag + %3q = X3s %3(0) = ¥3(0)
Proceeding similarly, define the i-th surface as

S.

i = X - X

id
Yis1 1s chosen to drive S; =0,
a’ S.p?

xiv =- KS;, - fi(x;) - 98.(x;) - # + X
Filtering y,,,, #;,,4 are obtained.

TiviXipid + Xivid = Yisl o xid(O) = Xi<0)
Finally, define

S

The controller u is chosen to be

n = Xp T Xpg

20 2
o VLS” n
u = - KnSn _jn<fn) - l9n¢n(fn) - % + xnd
The update law for the parameter estimates is as follows:
’91 = P151¢1
192 = 0> Sz¢2
1911 = {OnSn¢n
where K;,7;,0; > 0,i = 1,2,-*, n, are design parameters that can be adjusted.

3 Stability Analysis

Define the boundary layer error as
Yi = Xid — Xi i =20
and let the i-th surface error be

S.

i

= x; — Xy i1 =1,",n

The estimate error is defined as

0, =0, -0, i=1,,n

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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Define the Lyapunov function as

Vit 2V 4 2V = Z:%Szi+
i=2 i=1 1

n n
i=1 i=

V =

v 1, ST
42y 6> (17)
2 27 1%1/ 20,

The closed-loop dynamics can be expressed as follows.

For the surface errors,

S, = % +f1(f1) + 015{’1(371) +piw — &g = Sy + Xy +f1(f1) + 61¢1(f|> + piw; — Xy =
- a® S, p?
Sz+y2—K151+(91¢1(f1>—]Tlpl+P1w1 (18)
. - a’ S»*
S, = S + Yis1 — KS, + 0i¢i<-fi) - 1276117; + piw; (19)
. = a* S p*
S == K, + 0,8,(x,) - 22 4 p, (20)

For the boundary layers,
Y2 == ¥/7s - X2

Y3 == ¥3/7;3 —X3 (21)
yn == yn/z—n - X.n

For the estimate errors,
91 == P151¢1
0, =- 0,8
2=t (22)
én = - Pizsn¢n

The proof uses the technique of singular perturbations; interested readers are referred to [9,10]. In this
constructive proof, 6,(+), goi( -, glzl( -, 77,;( -, m( -) are used to denote functions at the i-th step of the

induction.
From Egs. (9), (10), (14) and (15), we can get
X = S, + x4
a; S, p
X = Sy + s — Ky Sy — fi(x,) + 9. (x,) - % + %y
(23)
X = Sia + v - KSi = fi(x) + 08, (%,) - # - T—l Vi=?2

By induction, for all i = 2,
xi+| = (/)i<sl’“.’Si+l’y27.“’yi+l’§l7“"&127[{1’“.’Ki?r25“.’7i’xld’xld> (24>
By Eqs. (19), (23) and (24), we have

S; = S + Yim - KSi + éi¢i<sl + X P st i) -
a% SiPZi(Sl + Xy Py s i)/ (2€) + paw; (25)
Assuming that there exists an upper bound function ®,(+) on S, then we have
‘ Si < @i(sl s S s Y29 s Yigd ’91 "“’éi’Kl o K ’Tz""’fi’xld’xld) (26)

Thus, the bound on S; depends only S,, ", Si, 1, ¥, s ¥is1,015,,0,, K, s K, 70,0 70y %14 and %, .
For the convenience, let Z = 1S,, ", S, %2> s ¥ins01s 20, Ky oy Koy Tyt To s K15 1q ) - Similarly,

one can show that

dp, : api.

de = 2 du i
Jj=1 J

dp,

dz

= @i(z) (27)
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dé.
dil = ‘/)i(Z) (28)
df;
By (3), we have
. J 9,d¢ ar S, p; dp, «
X :_KISI —(i —l.9 ¢(x1>— ;l]xllxl - 12€1p1 —(l% Slpl%?l-'-xld (30)
Then by Eqs. (26) —(30), there exists an upper bound function 1, such that
‘22‘$#2(51’52’y2’ l91’ K19 Xid s xlda xld) (3])
In addition, by (9), we have
. . J 29, sl ; Ip, & 7,
Xin =— KiS; - af - 94.(x) - ;—x _ 2oPi a; lpzz (QZ ? 3./_ (32)
j= j=1 i
By induction, there exists an upper bound functlon i1 such that
‘Xm ‘ = #i+1(z’551d) (33)
Sipial e
From Eqs. Tt g weget

. i - 28p?
Vi = 88, = Si(si+l + % - KS; + 0,4, (x,) - 2iobi + pw; | <

2e
~KST+ SIS+ Dyl + 8880+ 5 i =12, -1 (34)
Vns =- K/lS%l + Snén¢n + % (35)
Vi = - %@<stz¢;> = - S04, i =1,2,n (36)
2
Vi)’ = YinYin < % + ‘ym ‘/lm(zyxld) i=1,2,,n-1 (37)
i+l
Thus by (34) =(37), we have
n n-1
VS—EK%'*'Z[ z+1|+‘y1+1|)— |}’i+1‘#5+1]+% (38)
o1
2
By choosing K; = 2 + 7 and =1+ 221 + 7, we have

i+1
n-1 2

N S%n + y2i+1 2 A y%n#%n
Vs—(2+7)25i+2[f+5i— Lty + 50y + 75, |+ ne <
i=1 i=1

n n-1 2 2 2

i+ AH i+

T8 e ) me - 3 (1 B R 2 (39)
i=1 i=1

i+l
By choosing z;,,, € is small enough and K; is large enough, we have V < 0. Using LaSalle’s invariance

theorem, we can prove asymptotic stability with iS:, Yis éi {T—>0. Hence, in view of the above analysis, we get the
following theorem.

Theorem Consider the nonlinear uncertain system described by (1) . For all admissible uncertainties, there
exists a set of surface gains K, , -, K, and filter time constants z,, ", 7, such that robust adaptive dynamic surface
controller guarantees the semi-global stability of the closed-loop system and the output tracking of a given desired

trajectory.
4 Simulation Results

Consider the following 3-order nonlinear system:

%, = x, + 0,x)
%, = 23 + 0,(x7 + x3) + (sinx,)w, (40)
%y = uw + 2% sin(x, + x,) + wy

In simulation, ¢, = 0, =1, 0, =0, p, =0, p, = sinx,, p; = 1, w;, = 0,w, = cos2t, w; = 2sin3¢,
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filx) = f2(x%,) =0, f3(x;) = 2x5 sin(x, + x,), 9,(0) =0, 9,(0) =0, o =1, 0, =001, K, = K, =
Ky =10, %y = 1, %,(0) = 2, 5,(0) = 1, 23(0) =-10, € = 1.0, 7, = 73 = 0.01, x,,(0) = %,(0) = 0,
x3d<0> = X}<O> =0, x4 = 1.

Simulation results are shown in Figs.1 4.
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Fig.3 Parameters estimate 0, , 9, Fig.4 Control input u

Fig.1 shows that the output x, semi-globaly tracks the desired trajectory x 4. Figs.1 — 2 show the states x, and
x5 response curve. Fig.3 shows that the parameters estimate 9, and J, converge to some constants. Fig.4 shows the
control input u. Evidently, the controller designed guarantees the semi-global stability of the closed-loop system
and the output tracking of a given desired trajectory. This also demonstrates that the scheme proposed is effective

and feasible.
5 Conclusion

In this paper, we propose a new design method for robust adaptive control of a class of nonlinear uncertain
systems. This method is called dynamic surface control. Current backstepping algorithms require repeated
differentiations of the modeled non-linearities. The addition of n first order low pass filters allows the new
algorithms to be implemented without differentiating any model non-linearities, thus ending the complexity arising
due to the “explosion of terms”. The proposed approach guarantees the semi-global stability of the closed-loop
systems and the output tracking of a given desired trajectory. The simulation results also show the effectiveness and

feasibility of the scheme proposed.
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