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Abstract :

By combining the advantages of the additive weighted mean (AWM) operator and the ordered weighted averaging

(OWA) operator, this paper first presents a hybrid operator for aggregating data information, and then proposes a hybrid

aggregation (HA) operator-based method for multiple attribute decision making (MADM) problems. The theoretical analyses

and the numerical results show that the HA operator generalizes both the AWM and OWA operators, and reflects the

importance of both the given argument and the ordered position of the argument. Thus, the HA operator can reflect better real

situations in practical applications. Finally, an illustrative example is given.
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With the development of human society, how to
aggregate and process the given data effectively is a
very important issue in many fields, such as
economics, management, the military, etc. People
have put a premium on research on the aggregation

The additive weighted mean (AWM)

is a classical aggregation operator, which is

0perat01r5'l_3J
operator[]]
used to combine arguments (data) according to a set of
weights. The fundamental aspect of the AWM operator
The ordered

weighted averaging (OWA) operator was introduced by

is to weight the argument directly.

Yagermto provide for aggregation lying between the
max and min operators. Its fundamental aspect is the
re-ordering step in which the arguments are rearranged
in descending order. It is noteworthy that the OWA
operator weights the ordered position of the argument
instead of weighting the argument itself. Recently, the
OWA operators have been investigated in many

[3-10]

documents , and used in an astonishingly wide

range of applications including decision-making,
neural networks, database systems, fuzzy logic contro-
llers, expert systems, market research, mathematical
programming, lossless image compressionm , etc. In
this paper, by combining the advantages of the AWM
operator and the OWA operator, we present a hybrid
aggregation (HA) operator, and then propose an HA

operator-based method for MADM problems.
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1 AWM Operator and OWA Operator

For simplicity, we let M = {1,2,--,m| and N
= %],2,"',”}.
Definition 1" Let

AWM: R" — R, if

a; , where @ = lw,,

AWM, (a,,a,, " ,a,) = Zw-a
e
Wy, W, 1T s the weighting vector of a;, with w; €

[0,1] and ij = 1, then the function AWM is
j=1

called the AWM operator of dimension n .
The AWM operator has the following proper-

ties!'™ :

1) Monotonicity Let (a,,a,,**,a,) and (d,,

A

d,,"**,d,) be two collections of arguments, if a; <
@, , for any i, then
AWM, (a,,a,y, "y a,) < AWM, (&, ,4,,*",d,)
2) Idempotency Let (a,,a,,***,a,) be a co-
llection of arguments, if a; = a, for any i, then
AWM, (a,,"*",a,) = a
3) Bounded The AWM operator lies between the
max and min operators:
m[in(ai) < AWM, (a,,a,,"",a,) < max(ai)

1 1 11"
4) fo = b R B the AWM operator

n

is reduced to the arithmetic average operator:
1 n
AWM, (ay,a;,7a,) = D a
o1

Definition 2 Let OWA: R' — R, if

n
OWAw<a]9a25“"an) = ijbj’ Where w = {u)l,
j=1

Wy, ,w, | is the associated weighting vector, with
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n

w;, € [0,1] and 2 w; = 1, and b; is the j-th largest
1

element in the setj {a;,a,,*,a,}, then the function

OWA is called the ordered OWA operator of dimension

n.

The fundamental aspect of the OWA operator is
the re-ordering step. In particular, an argument a; is
not associated with a particular weight w,, but rather a
weight w,; is associated with a particular ordered
position i of the arguments (therefore, the weighting
vector w is also called the position vector) .

The OWA operator has the following properties ™ :

1) Commutativity Let (a,,a,,",a,) be a
collection of arguments, and (a},a’, ", a)) be any
permutation of (a@,,a,,***,a,), then

OWA, (a,,a,,*,a,) = OWA,(a|,d}, " ,a.)

2) Idempotency Let (a,,a,,**,a,) be a
collection of arguments, if a; = a, for any i, then
OWA, (a,,a,,",a,) = a

3) Monotonicity Let (a;,ay,",a,) and (d,,

d,,*,d,) be two collections of arguments, if a; <
@, , for any i, then
OWA,(a,,a,,",a,) < OWA,(d,,d4,,",4d,)
4) Bounded The OWA operator lies between the

max and min operators:

min(e;) < OWA, (a,,a,,*",a,) < max(a;)
1 1 1"

5) fw=1—, —,, — , the OWA operator
n’ n n

is reduced to the arithmetic average operator:
OWA, (a,,a,,,a,) = %Zai
iz
6) If w = {1, 0,---,0!", the OWA operator is

reduced to the max operator:

OWAw(al ’a2’.“7an) = m_aX(ai)

7) If w = {0, 0,-+,1}", the OWA operator is
reduced to the min operator:
OWAw(al ’az,"’,an) = m_in(ai)

2 HA Operator
Definition 3 Let HA: R" — R, if HA, ,(a,,

}T

n

N

aZ"naan> = ijbjy Wherew = {'M)|,1/U2,"','W,,
j=1

is the associated weighting vector, with w;, € [0,1]
and Z:wj = 1, where b; is the j-th largest of the
j=1

weighted arguments nwa; (i€ N), @ = {w,,w,, ",

w, IT s the weighting vector of the a, (i € N), with w;

€ [0,1] and ij = 1, and n is the balancing
=

coefficient, then the function HA is called the HA
operator of dimension n.

Theorem 1 The AWM operator is a special case
of the HA operator.

Proof Letw = {1/n, 1/n,, 1/n!", then

n

1
>0 b =

=1

HAm,w(al’a29'“,an> = ijbj =
j=1

Zwiai = AWMm(anaz,'"’an)

i=1

Theorem 2 The OWA operator is a special case
of the HA operator.

Proof Let w = {i, i,"', i}l , then nw.a;

n’ n n

= a;, I € N, therefore,

HA, ,(a,,ay,",a,) = OWA,(a,,a,,"",a,)
which completes the proof of theorem 2.

From theorems 1 and 2, we know that the HA
AWM and OWA

operators, and reflects the importance of both the given

operator generalizes both the

argument and the ordered position of the argument.
Thus, the HA operator can reflect better real situations
in practical applications.

3 An HA Operator-Based Method in MADM
For an MADM problem, let X = 1%, %, s X |

be a discrete set of alternatives, U = {u,, u,,",
u, | be a set of attributes, and @ = {w,,w,,"",w, |

be the weight vector of the attributes, where w; = 0,

=

Y j and 2 w; = 1. Let A = (a;),., be the decision
i=1

matrix, where a; is a numerical attribute value for
alternative x; with respect to attribute u; .

In general, there are benefit attributes, fixation
attributes, interval attributes, deviation attributes,
deviated interval attributes, and cost attributes in
MADM problems, and the “dimensions” of different
attributes may be different. In order to measure all
attributes in dimensionless units, we need to normalize
the attribute values. Suppose that each attribute value
a; in matrix A = (a;),,, is normalized into a corres-
ponding element in matrix R = (r;),,, .

In the following, we give an HA operator-based
method for MADM problems.

described as follows.

Step 1 Utilize the 0.1 - 0.9 complementary
[11]

The procedure is

scale” “to compare each of the two attributes, and
construct the fuzzy complementary matrix P =
(Pi)uxn» where p; =0, Vi, p;+p; =1, and p; =
0.5, and then utilize the simple priority formula of the

fuzzy complementary matrix (proposed in Ref.[12]):
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wi:rz(rzl—l)(gpij+r2l_1) iGN(l)

to get the attribute weight vector @ = {w,,w,,"**,w, | .

Step 2 Utilize the decision information given in
matrix R and the HA operator:

2z = HAw,w<ril’ri2'..’rilz) = ijbif 16 M (2)
Jj=1

to derive the overall value z; of the alternative x; (i €
M), where b; is the j-th largest of the weighted
arguments nw,a; (I € N) corresponding to the alter-
native x;,, ® = {w,,w,,",w,| is the attribute

weight vector of the a;(i € N), with w;, € [0,1] and

2 w; = 1, and n is the balancing coefficient. In the
Jj=1
case of a non-decreasing proportional quantifier (), the

weighting vector @ = {w,,w,,""",w,| associated

with the HA operator can be obtained by using the

following expression[s’ B,
w, = Q(/n) - QLG -D/n]  jEN (3)
where
0 r<a
Q(r) = (r-=a)/(b - a) a<r<b (4)
1 r>b

with a,b,r € [0,1]. Some examples of proportional
quantifiers are shown in Fig.1, where the parameters
(a,b) are (0.3,0.8), (0,0.5), and (0.5,1), res-

7
1.0F

M |

(a)
YA

oY

YA
1.0

0 0.5 1.0 =
(¢)

Fig.1 Proportional fuzzy quantifiers. (a) Most; (b) At

least; (¢) As many as possible

pectively.
Step 3 Utilize z,(i € M) to rank the alter-

natives and then to select the best one(s).

Step4 End.
4 Illustrative Example

In this section, an MADM problem of selecting a
robot ' is used to illustrate the proposed approach.

A robot user intends to select a robot and there are
four alternatives for him/her to choose. When making a
decision, the attributes considered include: @D p:
cost ($10 000); @ p,: velocity (m/s); @ ps:
repeatability (mm); @ p,: load capacity (kg).
Among four attributes, p, and p, are of benefit type,
p, and p; are of cost type. The decision information
about robots is presented in Tab.1.

Tab.1 The decision information about robots

. Attribute
Alternative
uj 1% us Uy
X 3.0 1.0 1.0 70
X 2.5 0.8 0.8 50
X3 1.8 0.5 2.0 110
X4 2.2 0.7 1.2 90

Step 1 According to Tab.1, the decision matrix
A for the MADM problem is
3.0 1.0 1.0 70
2.5 0.8 0.8 50
1.8 0.5 2.0 110
2.2 0.7 1.2 90

which can be normalized into matrix R by using the

A =

formulae:
o= 21,2,3,4; j = 2,4
- max a;
min a;
ry = Laij i = 1,2,3,4; ] = 1,3
where
0.6 1 0.8 0.636
R - 0.72 0.8 1 0.455
Tl 0.5 0.4 1

0.818 0.7 0.667 0.818
Step 2 Utilize the 0.1-0.9 complementary scale
to compare each of the two attributes, and construct the
fuzzy complementary matrix
0.5 0.3 0.4 0.2
0.7 0.5 0.6 0.4
0.6 0.4 0.5 0.4
0.8 0.6 0.6 0.5
By using Eq.(1), we can get the attribute weight
vector @ = 10.200,0.267,0.242,0.292}".
Step 3 Use the fuzzy linguistic

P =

quantifier
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“most”, with the pair (0, 0.5), and by (3) and (4),
we get the weighting vector (associated with the HA
operator) w = {0.4, 0.4, 0.2, 0",

Step 4 Utilize the decision information given in

matrix R and the HA operator
4

\
2 = HAm,w<ri1ari2ari3,ri4) = Z,ijg,-

i =1,2,3,4
ey
to get the overall value z; of the alternative x, :

z, = 0.8855, z, = 0.8442, z; = 0.8940,
z, = 0.8121
Step 5 Utilize z(i = 1,2,3,4) to rank the
alternatives as follows:
3> 2 > 2 > 2

and thus the best alternative is x5 .
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