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Simultaneous diagonalization of two quaternion matrices
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Abstract:

The simultaneous diagonalization by congruence of pairs of Hermitian quaternion matrices is discussed. The

problem is reduced to a parallel one on complex matrices by using the complex adjoint matrix related to each quaternion

matrix. It is proved that any two semi-positive definite Hermitian quaternion matrices can be simultaneously diagonalized by

congruence.
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The system of quaternions was introduced by
Hamilton in 1843 as an example of non-commutative
division algebras. It plays an important role in the
classification of finite dimensional associative algebras.
The study on the quaternion matrices can date back to
the work of L. A. Wolf in 1936 . For its background in

3.
, In recent years,

the study of quantum physics[z’
much work on this topic has been done. A theory has
been well developed similar to the case of complex
matrices. In spite of the difficulties caused by the non-
commutativity of the multiplication of the quaternions,
one has obtained a lot of parallel conclusions for the
quaternion case (on the determinant, rank, eigenva-
lues, relations of similarity and congruence, etc.).
One can find a systematical discussion in Ref. [4]. In
this short paper, we will discuss the problem of
simultaneous diagonalization of pairs of Hermitian
quaternion matrices. We will prove the following main
theorems:

Theorem ILet A,B be two n x n Hermitian
quaternion matrices. If A,B are all semi-positive
definite, then there exists an n x n invertible matrix C
such that C* AC,C" BC are all diagonal (where C~
denotes the conjugate transpose of C defined in the
below) .

One can prove that any two semi-positive definite
complex matrices can be simultaneously diagonalized
by congruence. So the theorem can be considered as a
generalization of this result to the case of quaternion

matrices.
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1 Preliminaries

For convenience, we recall some notions and
results on the quaternions and the quaternion matrices.

Let Q be the algebra of real quaternion and e, i,
J» k be the canonical basis of (). Then, a quaternion x
= xpe + %, 1 + x,] + %3k with real numbers x,, x,,
Xy, %3 1s often simply written as x = xy + %, + %,] +
x3k. Forany x = xg + 2,1 + x,) + 23k € Q, we call
Xos%9 + 2,1 and x, i + %, + x3k the real part, the
complex part and the imaginary part of x, respectively.
Letx = x° = %y — 4,1 — %, — 43k be the conjugate
of x, then xx" is always a real number for all x € (.

Let A = (ai.]-)

Denote by A" = (a; ), the conjugate transpose of

be an n x n quaternion matrix.

nxn

A . If there exists an n x n quaternion matrix B such
that AB = BA = I, the identity matrix, then A is
called invertible, and B is called the inverse of A. If
A" is the inverse of A, then A is called unitary. If A
= A", then A is called Hermitian. If A and B are
both Hermitian, then we say that A is congruent to B
if there exists an invertible matrix C such that B =
C AC.

It has been shown that Schur’s lemma holds also

for the quaternion matrices ™ :

for any n x n
quaternion matrix A, there exists a unitary matrix U,
such that U" AU is an upper triangular matrix. So, if
A is Hermitian, then the upper triangular matrix
U" AU in Schur’s lemma is in fact a real diagonal
one. Therefore, any Hermitian quaternion matrix is
congruent to a real diagonal matrix.

If A is an n x n Hermitian quaternion matrix,
then n° An is a real number for any n dimensional

column vector  with quaternion components. For a
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Hermitian quaternion matrix A, A is called positive

definite (semi-positive definite, respectively) if
n° An is always positive (nonnegative) for any
nonzero 1). Similar to the case of complex matrices,
one can easily prove the following results:

1) If A is positive definite (semi-positive
definite), then the elements on the diagonal line of A
are all positive (non-negative) ;

2) If A is diagonal, then A is positive definite
(semi-positive definite) if and only if the elements on
the diagonal line of A are all positive (non-negative) ;

3) If Hermitian matrices A and B are congruent,
then A is positive definite (semi-positive definite) if
and only if B is so;

4) Hermitian quaternion matrix A is semi-positive
definite if and only if A is congruent to a matrix of the

I, 0]
o ol

There is a theory on quaternion matrices similar to

form [

the case of complex matrices. The main difficulties in
the study of the quaternion matrices are caused by the
non-commutativity of the multiplication of the
quaternions. So the keys are often to find ways of
passing the problems on quaternion matrices to ones on
complex matrices.

The rank of a quaternion matrix A is defined as
the maximum number of columns of A which are right
linearly independent, and is denoted by r(A). It can
be shown that the product of A with any invertible
matrices have the same rank as A, and a square
quaternion matrix A is invertible if and only if r(A) is
equal to its order®’ .

A quaternion A is called an eigenvalue (more
exactly, a right eigenvalue) of matrix A provided that
there is a nonzero column vector 1§ such that An =
1A . A complex eigenvalue of A is said to be standard
if it has a nonnegative imaginary part. One knows that
any n X n quaternion matrix has exactly n standard
eigenvalues(see theorem 5.4 of Ref.[4]).

Clearly, for every x € (), there exist complex
numbers x,, %,, such that x = x, + x,j. So, for any
quaternion matrix A, there exist complex matrices A, ,
A,, such that A = A, + A,j. Now, suppose that A is
an n x n quaternion matrix and A = A, + A, is such
a decomposition, let
A, Az]

XA:[—Az A]

We call x, the complex adjoint matrix or adjoint
matrix of A. It can be verified that adjoint matrices
have the following propertiesm: for any n x n

quaternion matrices A, B,

1) Yas = XaXss

2) X4 = Xas

3) A is unitary or Hermitian if and only if j, is
unitary or Hermitian respectively;

4) A Hermitian matrix A is positive definite
(semi-positive definite) if and only if its standard

eigenvalues are all positive (nonnegative, respective-

ly).
2  Proof of the Main Theorem

We’ Il need some preliminary results given in the
following.

Lemma 1 Let A,B be two n x n Hermitian
quaternion matrices. If one of them is positive definite,
then there exists an invertible matrix C such that
C " AC,C’" BC are all diagonal.

Proof It is similar to the proof in the case of
complex matrices.

Lemma 2 Let A,B be two n x n Hermitian
quaternion matrices. Let k£ be any fixed real number.
Then A,B can be simultaneously diagonalized by
kA + B can be

simultaneously diagonalized by congruence.

congruence if and only if A,

Proof It is clear.
Lemma 3 Let K be the Hermitian complex

matrix
dl 0 O v,
0 d, 0 v
0 0 - d o
vy vy v, dy

If K is semi-positive definite and d,,; =« 0, then there
exists a sufficiently large real number k£ such that kT +
K is positive definite, where

T = diag%l,l,"',l,O}

Proof Let k£ be sufficiently large such that £ +
d,k + d,, ",k + d, are positive. It can be easily
obtained that the determinant of kT + K is equal to

(k+d)(k+dy)(k+d)-

Ul/[}l U,’[),
( dr+l - o

E+d, —~  k+d
Since d,,; > 0, it is clear that det( kT + K) > 0 when
k is sufficiently large, and then kT + K is positive
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definite.

Lemma 4  For each quaternion matrix A,
T<XA> =2r(A), where X4 is the adjoint matrix of A .

Proof See theorem 7.3 of Ref.[4].

Lemma 5 For each Hermitian quaternion matrix
A, xa is positive definite (semi-positive definite)
matrix as a complex matrix if and only if A is positive
definite (semi-positive definite) as a quaternion
matrix.

Proof By Ref.[4], the spectrum of ), consists
of the standard eigenvalues and their conjugates. So
the lemma follows.

Proof of Theorem We proceed the proof by
induction on r = max{r(A),r(B)}, where r(A),
r(B) denote the rank of A and B, respectively. If r
= n, then the conclusion follows from lemma 1.
Suppose that the conclusion holds for the case
max{r(A),r(B)! > r. Now we consider the case
max{r(A),7(B)! = r. No loss of generalities,
suppose r(A) = r and A = diag {1,1,---,1,0,-,

r

0} . Let

B [Bn 312]

~ LB, B,
where B,, ,B,,,B, ,Byparerxr, rx(n-r), (n-
r)x r,(n —r) x (n — r) matrices, respectively.
Since B, is also semi-positive definite, there exists a

unitary matrix P such that P" B, P is a diagonal

matrix.
Suppose P* B, P = diagid,,d,, ", d,|. If we
let
[P (0]
U=1lo 1
then
U AU = A
P B,P B,
U BU = [ ~ ~ ]
B, B,

So, we may omit the tilde and suppose at the beginning
that By, is diagonal:

B, = diagid,,d,, " ,d, |

If B, = O, B, = O, then, since By is
Hermitian, we can easily find an invertible matrix C,
such that C* AC, C" BC are all diagonal.

Suppose B, = O. If the first column of B, is
zero, then there exists some permutation matrix P such

that

N N B, E]z
P AP = A, P BP = | - ~
B, B,

and the first column of B, isn’t zero. So, as in the

previous discussion, we may omit the tilde and suppose

at the beginning that the first column of B, isn’t zero.

Hence, we can rewrite B as

_ [Kn Klz]
LK, K,
where

d 0 - 0
0 d, =+ 0 o,
K, = : : :
0O 0 - d v
vy vy v, dyy

such that v,, v,, ***, v, are not all zero, K, ,K,, , K,,
aresome (r+ 1) x(n-r-1),(n=-r-1)x(r+
1),(n —r-1) x (n - r—1) matrices, respectively.
Since B is semi-positive definite, so d,,d,,**,d,,,
are non-negative and d,,, = 0.

Let k£ be a positive real number. For estimating
the rank of kA + B, we consider its adjoint matrix
Xwms+p- By lemma5, ¥..,p is semi-positive definite as a
complex matrix. It is not difficult to see that its
principal submatrix of order 2r + 1 composed by the
elements of the first r + 1 rows, (n + 1)-th, (n +

2)-th, =+, (n + r)-th rows and the respective columns

are
K, O
lo &)
where
k+ d, 0 0 2
0 kE+d, - 0 o
K, = : : : :
0 kv d p
4 12 te d
and
k + d, 0
0 k+ d,
K, = : :
0 0 k + d,

So, by the proof of lemma 3, when £k > 0 is
sufficiently large, the (r + 1) x (r + 1) submatrix of
the upper-left hand of this matrix is positive definite,
and therefore, this matrix is positive definite. In
particular, r(xmw) > 2r. Hence, by lemma 4, the

rank of semi-positive definite quaternion matrix kA +
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