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Existence results for a class of parabolic evolution equations
in Banach spaces

Wang Jing Xue Xingmei
(Department of Mathematics, Southeast University, Nanjing 210096, China)
Abstract:  We discuss the existence results of the parabolic evolution equation d(x(¢) + g(t,x(t)))/dt + A(t)x(t) =
f(t,x(t)) in Banach spaces, where A(t) generates an evolution system and functions f, g are continuous. We get the
theorem of existence of a mild solution, the theorem of existence and uniqueness of a mild solution and the theorem of

existence and uniqueness of an S-classical (semi-classical) solution. We extend the cases when g(¢) = 0 or A(¢) = A.
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1 Introduction and Preliminaries
The class of equations considered in this paper has the form
%(x(t)+g(t,x(t)))+A(t)x(t) = f(e,2(1)) t>0}
x(0) = x

We consider this system as a Cauchy problem on a Banach space X, where A(t) generates an evolution

(D)

system; f,g:[0,T] x X = X are appropriate continuous functions. The case g = 0 has an extensive literature.
See Refs.[1,2] and the references contained therein. The present paper is related to some results when A(1) = A
in Refs.[3-5]. In particular in Ref. [3], the author gave the existence of a mild solution, a semi-classical solution
and a classical solution.

Throughout this paper X will be a Banach space equipped with the norm ||+ || . Let {A(z)|¢ € [0, T]! be a
family of linear operators and satisfy:

D The domain D(A(t)) = D of A(t), 0 < t < T is dense in X and independent of .

@ For each ¢t € [0, T], the resolvent R(A;A(t)) of A(t) exists for all A with ReA < 0 and there is a
constant M = 0 such that

‘|R(/1;A(t))||$ mﬂ% for ReA <0, t € [0, T]

@ There exist constants H > 0 and 0 < a < 1 such that

H(A(t)—A(s))A(T)71H<H|t—s ¢ for s,¢t,7 € [0,T]
@ For each t € [0, T], and some A € p(A(t)), the resolvent R(A,A(t)) of A(t) is a compact operator.
We remark that @ and @O imply that for every ¢t € [0,T], — A(t) is the infinitesimal generator of an analytic

semigroup'" and together with condition @ insure that this semigroup is compact for ¢ > 0.

Definition 1 A two parameter family of bounded linear operators U(t,s), 0 < s < t < T on X is called an
evolution system if the following two conditions are satisfied:
(i) U(s,s) =1, UCt,r)U(r,s) = U(t,s) for0 < s < r
13

(ii) (t,s) > U(t,s) is strongly continuous for 0 < s <

<

t< T

~ A

=

Lemma 1" Under the assumptions (D — @), there is a unique evolution system U(t,s) n0< s <t < T,

=< !

satisfying:
WD lute,s)l< Clr0< s <t < T;

&S

(ii)) FrO< s <t < T, U(t,s):X— D and t > U(t,s) are strongly differentiable in X. The derivative

B

d
aU(t,s) € B(X) and it is strongly continuous on 0 << s < t < T.
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Moreover,

d

(TtU(t,s)+A(t)U(t,s)=O forO0<s <t < T
C

t—s

H%U(“)‘z 4D UG <

and

&5

(iii) For every v € D and t € [0,T], U(t,s)v is differentiable with respect to s on0 < s < t < T and
d
a—SU(t,s)v = U(t,s)A(s)v

Lemma 27 Let 1A(E) ]| 0 < t < T} satisfy conditions O~ @. If | U(t,s)‘()s s < t < T/ is the linear

&S

lA(H UG, )A(s) <€ for0<s<t<T
[

evolution system generated by {A(t)}, then U(t,s) is a compact operator whenever ¢t — s > 0.
Definition 2 A function x € C([0,r]: X) is called a mild solution of the abstract Cauchy problem (1) if the
following holds: x(0) = x,; foreachO < t < r and s € [0,¢) the function U(t,s)A(s)g(s,x(s)) is integrable

and
€(1) = UCL0) (o + g(0,5)) = g(1,x(0)) + [ U1, AC)gCsoxs)ds + [ U ) fCs,x())ds
Definition3 A function x € C([0,r):X) is an S-classical (semi-classical) solution of the abstract Cauchy
problem (1) if x(0) = xy. - (x(£) + g(1,x(1))) is continuous on (0,r), x(1) € D for all ¢ € (0,r) and

x(+) satisfies (1) on (0,r).
Definition 4 A function x € C([0,r): X) is called a classical solution of the abstract Cauchy problem (1)
if x(0) = x5, x(¢t) € D forall t € (0,r), % is continuous on (0,r), and x(+) satisfies (1) on (0,r).
Lemma 3" Let {A(t)},cr0. satisfy the conditions @ — @ and let U(t,s) be the evolution system

provided by lemma 1. If £ is Holder continuous on [ s,¢], then the initial value problem

du(t)
d +A(t)u(t):f(t) for0<s<t<T 2)
u(s) = «

has, for every x €& X, a unique solution u given by
w(t) = UCt,s)x +fU(z,a>f<a>dg

For a function £ € C([0,a]:X) and 0 < ¢t < a, we will employ the notation
leCH)I, = suptl¢s)l:s € [0,¢]}

Finally for x, € X, we will use the notation x(+,x,) for the mild solution of (1).

2 Main Results

In this section, we will give three theorems about the existence results for the abstract Cauchy problem (1).

Theorem 1 Let x, € X, O~ @ are satisfied and assume that the following conditions hold:

(a) The function g € D(A(0)) = D and there exists L = 0 such that

HA(O)g(t,x) - A(O)g(s,y)” < L( | t - s| +lx - y”) foreveryO0< s,t < T and x, y € X; moreover,
la)"lL =< 1.

(b) The function f is continuous and takes bounded sets into bounded sets.

Then there exists a mild solution x(+, x,) of the abstract Cauchy problem (1) defined on [0, r] for some 0 <
r<T.

Proof IletO < r, < T, 6 > 0 such that

Vo= 1Gx(0)) € [0,r ] x X: [ x(0) - xf < o

Assuming that the function f is bounded on V by €, > 0, with @ we know that A(s)A(0)" is bounded by C,
> 0.

Choose 0 < r < r,, such that

[(U(t,0) - Dol < 120 3)
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[AO) | Lr + CC.LP + CCyr < 2580 (4)
CC,Lr < ]—gﬁ (5)

Define the set
S=1{x€ C([0,r]:X)]x(0) = xp, [ 2(t) = x| < &, t € [0,r]}
It is easy to see that S is a nonempty bounded, closed and convex subset of c([o,r]:X).

We define the operator:
Tx(t) = U(t,0)(xy + g(0,%,)) — g(t,x(t)) + [;U(t,s)A(s)g(s,x(s))ds +

f U(Ct,s)f(s,x(s))ds
0
For the mapping T we consider the decomposition T = T, + T,, where

T,x(t) U(t,0)(x, + g(O,xO)) - g(t,x(1)) +.[;U(I,S)A(s)g(s,x(ﬁ)ds

T,x(t) = J;U(t,s)f(s,x(s))ds

Next we will prove that T, and T, are well defined in S, and T is a contraction mapping and T, is compact.
It is clear that U(t,s)A(s)g(s,x(s)) is continuous on s € [0, ) and
[40) g1, x()) < [40)g(t,x(2)) = 4(0)g(0,x0) | + [ 4(0)2(0,x,)[ <
L(ry +8) + [A(0)g(0,x,)]
So,
lUe,s)A(s)g(s,x(s)) = 1UCe,5)A(s)A(0)"A(0)g(s,x(s)) | <
CC(L(r + &) + [ A(0)g(0,x0) )
which implies that | U(z,s)A(s)g(s,x(s)) | is integrable on [0, ). We thus conclude that T, is well defined
and with values in C([0,7):X). Samely, U(t,s)f(s,x(s)) is continuous on [0,¢), s € [0,#) and
I U(t,s)f(s,x(s))” < CC, if x € S, which implies that T, is well defined and with values in C([0,r]:X).
Let x,y € S, then for t € [0,r], with (3) —(5) we have
| 72 (e) + Toy(e) = 2] = [(UC,0) = Do+ [ £00,%) — g(e,x())] +

j;u UCt,)A(s) (g(sx(s)) = g(0,x0))] ds +J';|| UCt,s)fCs,y(s)ds <

[ (UC2,0) = Dol + A L(r + 8) + CCL(r + 8)r + CC, 1 < I%ia +

e

Moreover,

| Tyx(t) = Ty | < 1 g(e,x(2)) = gCe,y (1) +J; lUCe,s)ACs)(g(s,2(5)) = g(s,y(s)Nds <

lA) " LI xCe) = y(o) ]+ [;CCQLHx(S) —y(s)lds < (AL + cCyLr) % - yl,
Thus,

| v = Tiyl, < AT L+ CCoLr) |5 - ¥
The estimate (5) and ;2 < 1 imply that T, is a contraction mapping on S.

r

Now, we shall show that T, is compact.
By lemma 2 we know that U(t,s) is a compact operator whenever ¢ > s.
Let0 < € < ¢, for x € S, we define

T, x(t) = .[:EU(t,s)f(s,x(s))ds = U(t,i - e).‘; EU(t —e,s)f(s,x(s)) ds

The set { T, .x(t) | .csis precompact in X because U(t,t —¢) is compact for 0 < € < tandJ _ U(t-e,s)f(s,
0

x(s))ds is bounded in S.
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We observe that
| 70 () = T ()| sJ luCe,s)f(s,x(s))lds < €C,e

which implies that { T,x ()| ,cg is precompact.
For any ¢, < t, € (0,r),we have

H T,x(t,) - sz(tz)H = J;l U(ty,s)f(s,x(s))ds —J;z U(ty,s)f(s,x(s))ds

J: ||(U(t1,s) - U(tz,s))f(s,x(s))Hds +Jr2 H U(tz,s)f(s,x(s))”ds <

CIJ.OI H U(t,,s) - U(tz,s)Hds + CC, ‘ t, — tz‘

which implies that T,x(¢) is equicontinuous. From Arzela-Ascoli’s theorem we know that T, is compact.

Using an extended fixed point theorem, we know that T has a fixed point x(#) in S. This fixed point is the
desired mild solution of the abstract Cauchy problem (1) .

Theorem 2  Assume that {A(¢) | satisfy D — @. Let x, € X and the following conditions hold:

(a) The function g € D(A(0)) = D and there exists I, = 0 such that I A0)g(t,x) — A(0) g(s,y) | <
Lt = s|+]x-= y”) for every 0 < s,¢t << T and x,y € X; moreover, la) 'L = n < 1.

(b) The function f is continuous and there exists N > 0 such that ||f(t,x) - f(s,y) I < N( [t —s|+
lx - yl) for0< s,t < T and x,y € X.
Then there exists a unique mild solution x(+, x,) of the abstract problem (1) defined on [0, 7] for some 0 < r < T.

Proof The proof is given in two steps.

Step 1  First we consider the Cauchy problem

() + g(,x(0)) + A1) = h(D)

x(0) = x,
where h(t) is continuous. Let0 < r, < T, & > 0 such that
Vo= {(,x() € [0,r] x X:|a(t) - x| < 81
So, h(t) is bounded on [0, r,], assume that ||h(t)|| < ().
For (¢t,x(t)) € V, we have
|4 g(t, ()] < [A0)g(r,2(2)) = A4(0)g(0,x0)] + [ 4(0)g(0,x,)] <
L(r +0) + [4(0)g(0,x)]
I (el < (/G2 () = 0, x0) |+ [ /(0,200 [ < N(ry +8) + /€0, x0)
Let C, = max{ C};L(r, +9) + ||A(0)g(0,x0)|| sN(r +0) + ||f(0,xo)|| {,50 h,fand A(0)g are bounded
on V by C;, > 0. With the condition ® we know that A(s)A(0)™" is bounded by C, > 0.
Choose 0 < r < r; such that

(6)

|(U(1,0) = Dyl < 1220 (7)
A | Ir + CC, 17 + CC 7 < 1—;&6 (8)
CC,Ir < ]4;& (9)
CNr < 1 (10)

Define the set

S =fx€ C0,r):X)[2(0) = x, [2(1) - x] < 6,0 € [0,r]]
It is easy to see that S is a nonempty bounded, closed and convex subset of c([o,r]:X).
We define the operator:

Te(t) = U(£,0)(x + 2(0,x0)) — g(t,x(1)) +j;U<t,s>A<s>g<s,x<s>)ds +Q[;U(t,s)h(s)ds

The same as in theorem 1 we can see that T is well defined and with values in C([0,r]: X). Let x € S, with
(7) — (8) we have
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| 7w () = x| < [CUCE,0) = Do+ [ 2(0,20) = gCe,x(e)) ]+
KHWLMA@KﬂLth—gWMOWM+ﬂﬂwuﬁhuW®gHUKLW—IMJ+

[A) L +8) 4 CCL(r + 8)r+ COr < g0 4 4 0+ Lol <

Therefore T:S — S.

Furthermore, for any x,y € S,we have

I (o) = Ty(e)l < lgCe,x(e)) = gCe,y(e))l +j;” UCt,s)A(s)(g(s,x(s)) = g(s,y(s)))ds <

A" Ll x(e) - y(l)||+J;CC2L||x(S) —y(s)ds < (HAO) L + cCLr) % - yl,

Thus,
I e - Tyl, < (TAOT L + cC i) x - ¥l
The estimate (9) and 2 < 1 imply that T is a contraction mapping on S .
By the Banach contraction principle T has a unique fixed point x(¢) in S. This fixed point is the mild solution
of (6).
Step 2 Define the solution operator K by Kh(t) = x(t), here x(t) is the mild solution of (6). Let Gx(t)
= Kf(t,x(t)). Next we prove that G has a fixed point in S.
For any continuous functions h, (¢t), hy(t), t € [0,r], we have
Ky () = K (0 < [ 109 Chi () = ha (oDl ds < €l = b

t
0

r

Then for any x,y & S,

lGx(t) = oy (o) = I KfCe,x(e)) = KfCe,y () < CrlfCo,n(e)) = fCoyy(t))
CNr||x—y||,

|, <

So,
I 6x - 6yl, < CNrllx - ¥,

The estimate (10) implies that G is a contraction mapping.

And if Hx(t) - xOH < 0, then Hf(t,x(t))” < C,, from step 1 we can see that G: S — S.

By the Banach contraction principle we conclude that G has a unique fixed point in S, and this fixed point is
the desired mild solution of (1).

In fact, we can prove that the unique mild solution is a semi-classical solution. We state it out as a theorem.

Theorem 3 Under the assumptions in theorem 2, if x, € D,then there exists a unique S-classical solution
x(+,x,) € C([0,r]:X) forsome0 < r < T.

Proof From theorem 2 we get the mild solution of (1)

x(t) = U(t,0)(xo + g(0,50)) — g(t,x(1)) +J.;U(I,S)A(s)g(s,x(s))ds +

ﬂvuﬁyuwu»m

We affirm that x(+) is locally Hslder continuous. We shall make use of the following inequalitiesm: :
Y
lute + h,o) - U(t,r)lls‘tMih‘y if0<h<l, lt-cl=hand0< 7 <1
-7

For any 0 < h < t — s sufficiently small, ¢t & Le,r), Ve >0, we have
Ix(e + h) = x() < [ (UG + h,0) = U,00)(wg + g0,20)) | + 1 gCt + hox(e + k) — g(e,x()] +

[0+ B9 = U0 e ds + [T+ A s, a )l ds +
[0+ b5y = 00w s+ [ 106+ b7 x () s < 1 (o + O] b +

1-7 r]—}/
W+ CCCoh o+ €M

r

AT TLCh + T+ k) 2D + GOM T

yhy + CCh

The last inequality can be rewritten in the form
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oo+ 1) - a()] < P50y

Since p = LA™ N < 1. Therefore the function x(+) is locally y-Hoslder continuous on (0, 7). Now it is
easy to show that t = A(t)g(t,x(t)) and t — f(t,x(1)) are o-Hblder continuous on (0,r), where o= min{a,
7!. So, fCe,x(t)) + A(t) g(e,x(t)) is o-Hblder continuous on (0,r). From lemma 3, we conclude that x(¢)
+ g(t,x(t)) is a C' function on (0, r). The proof is completed.

Remark Assume that g(+) € D(A), f and g are continuously differential functions on [0, 7] x X, then

x(+,x,) is a classical solution.
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