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Stability analysis for nonlinear multi-variable
delay perturbation problems

Wang Hongshan' Zhang Chengjian
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Abstract:  This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems
(MVDPP) of the form »’ () = Sx(t),x(t = 7 (¢)), -, x(t - 7, (1)), y (1), y(t = 7, (1)), y(t = 7,(t))), and
sy’(t) = g(x(t),x(t - (1)), ,x(s = Tm(t)),y(t),y(t - T,(t)),"',y(t —7,(2))), where 0 < e < 1. A
sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler
method are stable under this condition.
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Multi-variable delay perturbation problems (MVDPP) usually arise in many hi-tech fields such as automatic
control, electronic systems, biology, etc. They are deemed as a sub-system of delay differential equations (DDEs) .
There are many results concerning the numerical stability and convergence for DDEs''"* . However, little research
work concerning the stability of singular perturbation problems with delays (SPPDs) especially MVDPP has been
reported at home and abroad. Consider the following systems:

Let {+, +) be the inner product of Euclidean space with the norm || . H .

(1) = fla(e),x(e = () sx(e = 7, () y (), y (e = 7 (), y (1 = 7, (1))

t € [0,7]

ey’ (1) = g(a(e),x(t = 7, (2)), -, 2(t = 7, (), y (), y(t = 7 (1)), 9 (2 = 7, (1)) (1)

1t €[0,T];0<e<1

x(t) = $(t), y(t) = ¢(t) T <t<0

w (1) = flw(e),w(t -z, (0)), = w(t - 7,(0)),2(0),2(t = 7, (1)), 2(¢ - 7,,(1)))

t € [0,T]
ez’ (1) = g(w(e),wle — 7, (1)), wle = 7, (1)), 2(0),2(0 = 7, (1)), 200 = 7,(1))) (2)
i €[0,7T]50 < e <1
x(t) = 0(0),y(1) =09(1) " <1<0

= ' =

where ¢ is a constant; 6,9,% and ¢ denote the given continuous functions; f: C" x C" x-xC" x C" x
(A ——
m

;

C"x - xC' —>C"and g:C" x C" x = x C" x C" x C" x - x C" — C" are the given sufficient smooth
(A —— - (. —

m m

mappings; ¢ = inf {t-7z()l,z,(¢) >0(i =1,2,-,m). Ttis always assumed that (1) has a unique

t;to,lsism

solution x(¢) and (2) has a unique solution w(¢). & = 1 + 1/e.

1 Stability of Theoretical Solutions

Definition 1 System (1) is stable if the solutions y () and Z(t) corresponding to different initial functions
0,9 and ¢, ¢, respectively, satisfy

() —w() |+ [ y() -2() | <€ max {1 ¢C) -0 | + [ () =9() ] (3)

=00

where C is a constant.

Theorem 1  Assume system (1) satisfies
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Re<‘f<xl’ulﬁn'9um9yﬁvl,“'9vm) _f‘<x29ul5.“9um9y51}1’”'91]m)9x1 - x2> $ wl(t)Hxl - x2||2 (4>
Re<g(x Ups 5 Uy s Y15 V1575 Uy )—g(x Uy, ™ " Uy ’9’2’01,"'s”m)’}’1 —y2> = wz(t)“}’l —}’2“2 (5)

| /gy s s 200 ¥ ) = f(Ros % K Yo v 7)) | <

Ld(t)||x—x|\+ L}'(t)”y,—y,” (6)
Hg(xo,x.,'“,x Yo ¥ ¥e) = &KX T Yo YY) | <

Mol -5l ]_'Znoy,mny,-—y,-n )

then system (1) is stable.

Here (U](t),(t}z(l),d‘(l),&‘(l),y-(t),;lj(t)(j = 1,2,:*-,m) are continuous functions; o(¢) = Zaj(t),

=

m

(1) = iyu) o0 = o0, 7 - NV7.(1). And they satisfy 0(1)s 70(1) < 0, 5(1) > 0, (1) <

y =
- wl(t) Y(t) >0, 7(1) <— w,(1).
Proof lLet X(1) = [x(¢) —w()|,¥Y(t) = [ y(2) - z(t)ll E =1t € [t,%):]Y(¢) or X(z) = 0| }.
When t € E, system (1) is stable. This is readily seen’” . When ¢ € [t,,*)/E, then Y (¢) and X' (1)
exit. And

X (1) = Re(a’ (1) - W}gé)t)x(t) - w(t)) V() = Re(y’ (1) - Z’l(/gz),y(t) - z(1))

From Schwaritz inequality, (4) and (6), it follows
T8 = w2 Re(w’ (1) =/ (0),x(0) = w(0)) <
o, (O)X() + 7, ()Y()X(t) + T(e)X(t) + T(e)X (1)

Therefore

X(t) <o (X)) + 7,()Y(2) + I'(2) + (1) (8)

where I'(¢) = Za (D2t = 7() = w(t = ()], w(1) = 2 7Oy = (1) = 2(e = 7;(1))] .
Using the s]ame method we obtaln

Y (1) < wz(t)Y(t)+ ao(t)X(t)+F(z)+1If(t) (9)
where
P = L3060l - 5(0) =l - 5G]
T = L3701y - 5(0) - 26 - 5(0)]
Let

G(1) = X(1) + Y(1),B(1) = max{ (@, (1) + Too(0)] [ 7a(1) + s (1)) ]
() = X300 + Lo, It - 5,() — wli = ()] +

D70+ L) Iy = 5(0) = 2= ()]

j=1

From (8) and (9), we get
A 6(Dep(= A(1))) < expl= A()Q(1)

where A(¢) = Jl B(x)dx.

to

Therefore
G(1) < exp(A(t))((G(to) + .[: 2(x)exp( - A(x))dx)



Stability analysis for nonlinear multi-variable delay perturbation problems 195

G(1) < exp(A(1))(G(1y) + max (= B(x))"'Q2(x)(exp(= A(2)) = 1))

sx<t

lysxs

G(1) < max( G(1,),C, lmaX<|| X(e =N+ | Y= (e)]))
<jsm
_ w; (1) wz(t)}
where C, = € tOIQ?ST{ B(1) B(1)
Further, for YV ¢ = t,, we get

() = wl+ 1y(e) - 2(D < € max {18C) - 0 [+ ToCe) - 93

o <x<l

with
T
min{ inf <T1<t) ,T,,,(t))f]-"l

tyst<T

C=0C,K=]

where [ ] denotes the integer function.
2 The Stability of the Implicit Euler Method

When applying the implicit Euler method to system (1) and system (2)

Xpp1 = Xy + hf<xn+l’xl,n+l’“.’xm,n+l’yn+1’yl.n+l’“.’5/m,n+l)

1 . . . . (10)
Ynet = Yn +?hg(xrul?xl.n+1"“’xm,n+l’yn+l’yl.n+l"..5ynz.n+1)
wn+l = wn + hf(wn+l5wl,n+l5“.’wm,n+l’zn+1’zl,n+1?”.’zm,n+l>

1 _ _ . . (11)
zn+] = zn + ?hg(wlwl’wl,n+1’.“7wm.n+]’Zn+l7Zl,n+l’.”’zm,,n+l)

where x, » Yoo Wa s By s Xj st s ¥jnel ,ﬁ)‘f‘,lﬂand Zj,ml are approximations to true solutions x(t),y(t),w(t),z(t),
x(t—7;(0)),y(t — 7;()),w(t - 7;(¢)) and 2(t - 7;(1)).
Definition 2 The numerical solutions of system (1) are stable if they satisfy
| + 1y - al< € max LI¢() - 01+ o) —9CNIT  nx1
<=y,

Definition 3 Interpolation methods are stable if ¥,y ,w and z satisfy
Fanaxl 1 $(0) = 0001+ T () = 9(0)1 1}

where {x, 1, %yn b, fw, b, {z,1 are respectively solution sequences of (10) and (11) and x,%,w,z are the

X

n

ly -zl + 1z - wl < Lymax{ max {] y: -
O<isn

w;

corresponding interpolations at ¢ = " (¢, < ¢t < t,).

Theorem 2 The numerical solutions of system (1) are stable if the system satisfies (4) — (7) and the
interpolation method is stable.

PrOOf Let Axn+1 = Xpe1 — wn+l7Ayn+l = yn+l - zn+1?ij,n+l = 'i;]',l7,+| - wj,n+l’ Ayzu-l = 5/]',11+I - Ej,n+1’
O =¢ max1— w, (), — wy(t)}.
O<i<T
HAer-l || <Axn+l 7Axn+l> = <xn+1 = Why1 5%, — wn> + h(f(xn+l’xl n+1’”.’pzm,rul’yn+1’5/1,n+1"“7

ym n+l) - f( Wy i1 ’wl n+l ’.“’wm n+l 2 Znsl, Zl n+l, "’Zm,rwl )>

From (4) —(7),we get

H Axu+l || $

Vo (DA% |+ 2D 7, (DAY
j=1 j=1

Using the same method, we have

h m B B h m o R
HAyrHl || = HAyn + ?Zdj(t)”ij,nJrl H + ?2 y}‘(t)“ij,nJrl H
j=1 j=1
Therefore

” Ax/Hl || + H A}”Hl ll = ’

By the interpolation method, we obtain
s+ 1850l < (14 A0 ma (1] + [y

Further,

+ hé@ m&X {“ ij,rwrl ll + ” ijanrl H }
I<jsm

Ay —a(ol+ Te(e) - o3

< € max {I¢(0) - 0() |+ l(t) =901}, C = exp(OLT)

o <t<ty

Xp — Wy || + |yn
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B OE FwT e () =f(a(t),x(t -7, (), x(t=—7,(8)),y(t),y(t =7, (), y (2
—r,(D)NA ey (1) =g(x(e),x(t -7, (1)), u(t =7, (), y(e),y(t -7, (), y(t = 7,
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