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On meromorphic functions sharing one value
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(Department of Mathematics, Jiangsu Institute of Education, Nanjing 210013, China)
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Abstract:  The uniqueness of meromorphic functions with one sharing value and an equality on deficiency is studied. We
show that if two nonconstant meromorphic functions f(z) and g(z) satisfy 6(0,f) + 5(0,g) + 8( e ,f) + 6(®,g) =3 or
5,00,/) + 0,(0,2) + 8,(0,f) + 8,(,g) =3, and E(1,f) = E(1,g) then f(z), g(z) must be one of five cases.
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1 Introduction and the Main Result

In this paper, by meromorphic function we always mean a function which is meromorphic in the whole complex
plane C. Let f(z) be a meromorphic function, we shall use the following standard notations in Nevanlinna
theory[l 2

T(r,f),m(r,f),N(r,f),N(r,f>“'
We denote by S(r,f) any function satisfying
SCrof) = oi T(r,f)}
as r —>+ @, possibly outside a set of finite Lebesgue measure.
Let a be a complex number. Set
E(a,f) = {zIf(z) - a = 0}

where a zero point with multiplicity m is counted m times in the set.

Let N(z( r, j%a) be the counting function which only includes multiple zero of f(z) — a. Set

1
N\ ry7—
Nz(r,]%a) = N(r,ﬁ)+ﬁ(z(r,]%) 8,(a,f) = 1 - Tim (—T(r,]:%l)

r>w

N( L) N( T’L)
0(a,f) =1- hm# @ ((r, f)_l—hm#
ree T(r,f) row T(r,f)
where E is a set of r with finite measure. In this paper, E may be different at different places:3‘4] .
Theorem 1°  Let f(z) and g(z) be nonconstant meromorphic functions satisfying
S(oo,f) = 0(®,g) =1, 8(0,f) + 6(0,g) > 1
If E(1,f) = E(1,g), then either fg = 1 or f = g, and the number 1 in the above inequality is sharp.
The following result gives an improvement of theorem 11
Theorem 2 Let f(z) and g(z) be nonconstant meromorphic functions satisfying
8(0,/) + 6(0,8) + @(oo,f) + @(o,g) >3
If E(1,f) = E(1,g), E(®,f) = E(®,g), then either fg¢ = 1 or f = g, and the number 3 in the above
inequality is sharp.
Now, what conclusion can be made, if
5(0,f) + 6(0,g) + 8(=,f) + 6(»,g) = 37
Theorem 3 Let f(z) and g(z) be nonconstant meromorphic functions satisfying
50(0,f) + 6(0,g) + 8(o,f) + 6(o,g) =3 o0r 5,(0,f) + 8,(0,g) + 8,(o,f) + 5,(=,g) =3 (1)
If E(1,f) = E(1,g), then one of the following cases must occur:
(a) 8(0,f) = 6(»,f) =1, 6(0,g) +6(®,g) =1, §(a,g) = 0 for any complex number a( £ 1,0, % );
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(b) 6(0,f) =8(»,f) =1, 6(0,g) +6(®,g) =1,8(a,f) = 0 for any complex number a( = 1,0, ©);

(c) 6(0,f) +6(ee,f) >1,6(0,g) +6(°,g) >1, and 6(a,f) = 5(a,g) = 0, for any complex number
a(0,);

(d) f=((1-a)g + a,a # 1, in particular, if a = 0,f = g;

(e) (f-=a)g-b)=U=a)(l=b), axlbsxl.

Remark The following examples show that each of the above cases definitely occurs.

Example 1 Let f(z) = €°,g(z) = (¢ = 1) + 1, Obviously, E(1,f) = E(1,g), 6(0,f) = 6(e,f)

=1,06(0,g) +8(e,g) =1,6(1,g) = % #0,0(a,g) =0, forany a(5 0,1, % ). Hence cases (a) and (b)
occur.

Example 2 Let f(z) = e (1-¢°),g(z) = e *(1-e*). Obviously, E(1,f) = E(1,g),5(0,f) + 5(e,

f) = % > 1,6(0,g) + 6(»,g) = % > 1,6(a,f) = 6(a,g) = 0, for any a( =« 0, % ). Hence case (c)

occurs.

z

Example 3 Let f(z) = e, g(z) = %e +

,g(z) = % + e?. Obviously, f(g - %) = % Hence case (e) occurs.

. Obviously, case (d) occurs.

N —

z

Example 4 Let f(z) = %ze’

2 One Lemma

To prove theorem 3, we need the following lemma.
Lemma Let f(z) and g(z) be nonconstant meromorphic functions satisfying

DA = Zﬁz(a,f) + Zﬁz(a,g) +min{8,(1,£),8,(1,g)f >3

@ > @(a,f) > 1, >, @(a,g) > 1

If E(1,f) = E(1,g), then one of the following cases must occur:
(a) f= (1 -b)g+b,bsx1;
(b) (f—a)(g-b)=(1-a)(l->5b), where a,b € C;

() f= 288 4 BC 2 0and @(0,1) + ®(®,f) + @(0,g) + @(,g) < 2.

Cg + D’
Proof By @ we deduce that
q q
D@ (a,f) > 1, D @(a,g) > 1 (2)
i1 ic1
where a,,a,, ", a, are pairwise distinct complex numbers such that a;, = 1 (i =1,2,+,q).
By the second fundamental theorem” we have
_ i 1
(o= DTG < Nrp by« D120 )+ sGup 3)
(-7 < Nro )+ It ) s 56 @
= g-1 " g-q
It can be obtained from (2) =(4) and E(1,f) = E(1,g) that
T(r,f) = O{T(r,g)t, T(r,g) = O{T(r,f)} r—>w; r &k (5)
where E is a set of r with finite measure. Hence S(r,f) = S(r,g).

Set
PN SR SN 4 6
LA Ry A | (6
Since E(1,f) = E(1,g), by a simple computation we see that if z, is a simple zero of both f(z) — 1 and
g(z) =1, then ¢(z,) = 0.
Next we shall prove that ¢(z) = 0. Suppose on the contrary that ¢(z) = 0, then

N')(r’]%l) = N”(r,ﬁ) < N(r,é) < T(r,go) +o(l) < N(r,go) + S(r,f) (7)

where Nl)( r,J%l) is the counting function which only counts simple zeros of f(z) = 1in {z: ‘ z | < ri.
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Let zy € E(1,f), then by a simple computation we deduce from E(1,f) = E(1,g) and (6) that go(zo) 4
o . Therefore poles of ¢ only occur at zeros of f” and g’, and at multiple poles of f and g by (6).
Let a,, a,,"**, a, be pairwise distinct finite complex numbers such that a; « 1 (i = 1,2,**, n) and for

some positive number e ( < A - 3),

Z,&(al,f) + 0,(%,f) + Z,é}(al,g) +8,(%,g) +min{d,(1,/),8,(1,g)l -3 > ¢ (8)

i=

It can be obtained from(6) and (7) that

1 1
N”(r’ﬁ)g No(r,f )+ No(r,g )+ No(r,f) + No(r,g) +
"N T 1 — 1
;[N<2(r,m)+N(2(r,m)]+ S(r,f) (9)
where NO( r,%) only counts those zeros of f’ but not those zeros of (f - 1) ll (f - a;).
i=1
By the second fundamental theorem, we have
1 7117( 1 )
o) < V) + Nr ) SIN(r )= W)+ 8 (10)
and
l n o 1 ) i
nT(r,g) < N(r, g)+N( g—1)+ ;N(r’g—ai —No(r,g,)+S(r,g) (11)

It is easy to see that

N(r’f_il) + N(r,g 1_ 1) = ZN(r,]%l) < Nl)(r,ffll) + Nz(r,j%]) (12)
Combining (9) = (12), we obtain

n[T(r,f) + T(r,g)] < 2[ (r,f )+N<2(r, _lai)]+N(r,f)+
émb
Mo 1o i)+ Nalrf) + NoGrog) + S(rof) (13)

With no loss of generality, we assume that

T(r,g) < T(r.f) rel (14)
where I is a set of infinite measure. By the definition of deficiency and E(1,f) = E(1,g), we can deduce from
(13) that as r >+ o ,r &F,

[i&(ai,f) F o ) - 1= S TG +

= ai)+N<z(r,ﬁ)]+fV(r,g) +

[ D020 0) + 0:(.0) + 0u(1g) 2= S| T(r ) < ol T(rop)]

From (1_3) and the above inequality, we obtain that as r —> o ,r & I\ E,
[ D10,Ca,f) + 6,(o0 ) + D)6,(a,,g) + 6,(,g) +
o1 o

min{8;(1,),8,(1,¢) | =3 = S| 7(r,0) < o T(r,f)] (15)

Thus we deduce from (8), (15) and S(r,f) = S(r,g) that T(r,g) = o{T(r,g)l, r—>oo, r&€ I\ E,
a contradiction. Therefore, ¢(z) = 0. We deduce from (6) that
Ag + B
f= Cg+ D (16)
where A, B, C and D are finite complex numbers satisfying AD — BC = 0.
Next we consider five cases:

Case 1 C = 0, then we get from (15) that f = ag + b,a 0.
If /5 1, then we obtain from E(1,f) = E(1,g) that g % 1. Thus, by 282(a,f) < 1 and ZBz(a,g)

azl a#l

< 1. We have
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Zgz(aaf) + 262<a7g) + mln{82<laf)’62(1ig)} $ 3
azl al
which contradicts D. Therefore there exists z, such that f(zy) = g(z,) = 1. Hence, we have a + b = 1. Thus
we obtain f = (1 -b)g + b,b 1.
Case2 A = 0, then we get from (16) that f(g — b) = ¢,c % 0.
From E(l,f) = E(l,g), we have ¢ = 1 = b.
Hence f(g — b) =1 - b,b = 1.
Case3 B =0andA «0,C = 0,D =0, then we get from (16) that f = C?A.%
A - AD/C
Thusf—c = Ca+ D
Hence we have (f - a)(g —= b) = ¢,c s 0. Then, we deduce from E(1,f) = E(1,g) that ¢ = (1 - a)(1
— b). Thus, we obtain

(f-b)(g-0b) =(-a)(l-0b) a = 1:b %1

Case4 D =0and A 2 0,B =« 0,C 0, then we get from (15) that f = éger.Then, f-

Thus, we obtain from E(1,f) = E(l,g) and the above equality that (f - a)g =1-a.
Case5 A «0,B«0,C%x0andD %« 0.
From (15), it is easy to see that

N(r,g) = N(r,]%/l/c)’ N(“é) = N(r’]%B/D)

By the second fundamental theorem we have
2T(r,f) < N(r,f) +N(r i)+]7V(r ¥)+7\7(r ¥) =
AR ’ T f f-A/C "f - B/D

N(r,f) +N(r,%)+]7\f(r,g) +N(r,é)+ s(r,f) <

[4 - @(0,f) - @(o,f) -@(0,g) - @D(o,g) +e]lT(r, f) + S(r,f)
where ¢ is a sufficiently small positive number.
IF®@,f) + (e ,f) + @(0,g) + @D(®,g) > 2,we can deduce from the above inequality that T(r, f)
< ol T(r,f){,r— ®,r € I, a contradiction. Therefore
@0, /) + @(x,f) + @D0,g) + W(o,g) <2

This completes the proof of the lemma.

3 Proof of Theorem 3

=

B
Cg’

In order to prove theorem 3, we consider three cases:

Casel 6(0,f) = 6(»,f) = 1and 6(0,g) + 6(®,g) = 1.

If 5Ca,g) = 0 for any complex member a (5« 1,0, ), then the conclusion (a) is valid.

If there exists a complex a (% 0, % ,1) such that 5(a,g) > 0 then,by lemma, we can easily obtain that the
conclusion (d) or (e) is valid.

Case2 6(0,f) + 8(e,f) =1, 65(0,g) = 6(,g) = 1.

By the same reasoning with case 1 we can obtain that the conclusion (b), (¢) or (e) is valid.

Case3 6(0,f) + 6(ee,f) > 1, and 5(0,g) + 6(®,g) > 1.

If both §(a,f) = 0and 6(a,g) = 0, for any complex number a( s 0, %) then the conclusion (¢) is valid.

If there exists a complex member a (£ 1,0, %) such that max {8(a,f),0(a,g)! > 0orminid(1,f),d(1,
g)i > 0. By lemma, we can easily obtain that one of the conclusions (d) or (e) is valid.

If min {6(1,£),06(1,g)} = 0, but max{(?(l,f),é‘(l,g)} > 0, with no loss of generality, we can assume
that 6(1,f) > 0, and 6(1,g) = 0.

If 5,(1,g) > 0, by lemma, we can easily obtain that either the conclusion (d) or (e) is valid.

If 5,(1,g) = 0, by using the same reasoning that was used to prove formula (13), we can also obtain T(r,
f) = 0{T(r,g)},T(r,g) = O{T(r,),r—> ,r &E, hence S(r,f) = S(r,g). Set

go(z)=f~,—2j;_L/1—§;+2g—i:/—l (17)

Next we shall prove that ¢(z) = 0. Suppose on the contrary that ¢(z) € 0. Using the same reasoning that was

”



204 Qiu Huiling

used to prove formula (13) we have

T(rf) + 7o) < Ml rp )+ MG+ N(rp )+ M)+ Wrgbq) + 8 (9)
Lt Tm =Dy (19)

e T(r,g)
From 52(1 f) > 0 and 6,(1, g) = 0, we get that A > 1.
From (18), (19) and 8,(1,g) = 0, we have
N(r,i)
A+l = Tim L) T L g el S)

< lim + lim

MG TSI TG PTG ) S
[I—S(Of)h+[1—8(°° f)]/\+[1—5(0 gl +[1-06,(0,g)] +1
Hence we obtain
[62<()f)‘|'('>\2(°°;f)—1}/1 2—82(0 g)—3z(w,g)
Since 8,(0,f) + 8,( = ,f) = 6(0,f) + 6(%,f) > 1l and A > 1, we obtain
82(0’f> + 82(°°’f> -1<2- 62(()’8) - 32(°°ag)
That is 6,(0,f) + 6,(®,f) + 6,(0,g) + 8,(,g) < 3, which contradicts (1). Therefore we have ¢(z)
= 0. Hence we deduce from (17) that

f_Ag+B
“Cg+ D

where A, B, C and D are finite complex numbers satisfying AD — BC = 0.
If f21, by 5(0,f) + 6(®,f) > 1, we have 6(0,f) + (o ,f) + 6(1,f) > 2, which contradicts 23((1,

f) < 2. Therefore, there exists z, such that f(z,) = g(z,) = 1. According to the proof of lemma we can easily
obtain that one of the conclusion (d) or (e) is valid.

The proof of theorem 3 is complete.
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