Journal of Southeast University (English Edition)

Vol.19 No.3 Sept. 2003

Matching spatial relation graphs using a constrained
partial permutation strategy

Xu Xiaogang' Sun Zhengxing' Liu Wenyin’

(' Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China)

(* Department of Computer Science, City University of Hong Kong, Hong Kong, China)
Abstract: A constrained partial permutation strategy is proposed for matching spatial relation graph (SRG), which is
used in our sketch input and recognition system Smart Sketchpad for representing the spatial relationship among the
components of a graphic object. Using two kinds of matching constraints dynamically generated in the matching process,
the proposed approach can prune most improper mappings between SRGs during the matching process. According to our
theoretical analysis in this paper, the time complexity of our approach is O(n”) in the best case, and O(n!) in the worst

case, which occurs infrequently. The spatial complexity is always O(n) for all cases. Implemented in Smart Sketchpad,

ISSN 1003—7985

our proposed strategy is of good performance.
Key words:

Graphs are powerful data structures for structural
relational descriptions in structural pattern recognition
and computer vision. By assigning a suitable meaning
to nodes and edges of graphs, it is possible to achieve
complete and univocal representations of objectsm.
Typically, nodes represent the components of an object
and edges represent relations between these
components. When graphs are used for representing
structured objects, the problem of measuring the

similarity of objects turns into the problem of
calculating the similarity of graphs, which is generally
referred to as graph matching® . In the last decades,
plenty of algorithms for graph matching have been
proposedD*g] .

In this paper, a novel approach to graph matching
is proposed. We use a so-called constrained partial
permutation strategy to dynamically prune improper
permutation states in which two graphs are determined
unmatched without necessity to check their details.
This matching strategy has been employed in our spatial
relation graph (SRG) matching, which is proposed by
X.G.Xu, et al.” and used for representing the spatial
relationship among the components of a graphic object
and matching between two graphic objects in our sketch

input and recognition system Smart Sketchpad ',

Received 2003-01-27.

Foundation items: The National Natural Science Foundation of China
(69903006) and grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (City U 1073/02E) .
Biographies: Xu Xiaogang (1977—), male, master; Sun Zhengxing
(corresponding associate professor,

author), male, doctor,

szx@nju.edu.cn.

spatial relation graph; graph matching; constrained partial permutation; graphics recognition

and has yielded good results'?' .

The rest of the paper is organized as follows.
Section 1 presents the constrained partial permutation
strategy. Discussion on the computational complexity of
the constrained partial permutation algorithm is
described in section 2. Finally, we give our conclusion

in section 3.

1 Constrained Partial Permutation Strategy

In order to save the drawing efforts for the user,
we try to predict what the user intends to draw before
he completes it. This is done by matching the user’s
current sketchy input with the predefined graphic
objects in the database and informing him of the list of
those graphic objects that might be his intention so that
he can simply select the real intended one from the
list .During the matching process, we should check
whether each graphic primitive type and each spatial
relation between graphic primitives is preserved under
a mapping of the nodes from the SRG of the incomplete
sketchy object to that of the graphic object in the
database. Obviously, the whole process depends on
that mapping and enumerating all such mappings is a
full permutation problem. However, since most
mappings are illegal and can therefore be pruned
directly during the permutation process according to the
matching constraints. Hence, this permutation process
is a constrained and partial one.

Definition 1 Constrained partial permutation:
given two positive integers, m, n and m < n, select

m different integers from [1,-,n], and then rank

Matching spatial relation graphs using a constrained partial permutation strategy 237

9 Bk’ “" Bm’

, m are the positions in the list

them in a list, written as B,, B,, -
where 1, 2, ==+, k, -
and B,, B,,

corresponding positions in the list, enumerate all

**, B,, -+, B, are the values at the

possible such lists which satisfy one or both of the
following two classes of constraints:

(D Vertex matching constraint: i can’t be put into
position k, that is, B, s i, denoted as R.(i, k).

@ Edge matching constraint: If i has been put
into position k&, j cannot be put into position 1, that is,
if B, = i, then B, > j, where i, j € [1,-,n], k,
1€ [1,-,m] and k < [, denoted as Rp(i, k) -
(j, 1). This is actually a conditional vertex matching
constraint.

In definition 1, position & in the vertex matching
constraint and position [in the edge matching
constraints are referred to as the increasing point for
calculating the subsequent proper permutations. In
order to acquire all possible permutations, we regard
the string B,B,"**B

integer (i.e., B, can be an integer between 1 and n),

. as an m-digit n-cardinality
in which all digits are different, and then enumerate all
such m-digit integers in the lexicographic order, i.e.,
from the beginning i.e., 123-:m, to the end, i.e.,
n(n-1)(n-=2)(n-m+1). Each time we
obtain its next permutation by finding the smallest legal

m-digit number that is larger than the current one.
1.1 How to find next permutation

To record a permutation state, we use an n-digit
n-cardinality integer B, whose first m-digit integer,
B,B,*** B, , is the permutation we need, which is
referred to as the working area and the latter (n -
m)-digit integer, B,.,, B,., ** B,, is used to record
extra information of current permutation, which is
referred to as the backup area, as illustrated in Fig.1.
In algorithm 1, we describe how to compute the next
possible legal permutation from the current permutation
according to a given d, where d is the increasing

point.

i Splitter
| 5| B | | B, | Bu

&

Working area Backup area

Fig.1 The data structure used to record the permutation state

Algorithm 1

Objective: to calculate the next permutation of the

Next-permutation (B, d)

current permutation according to a given d .

Input: d, B, where B is the current permutation

state and position d is the increasing point.
Output: the next proper permutation or null,
where null means there is no proper next permutation of

the current permutation according to the given d.

Begin
sort (Bg,1, 5, B,) in ascending order;
if (B, = B,)
{ do{d = d-1;! while ((d #0) & (B; > By,1))s
if (d ==0)
{ output NULL;
End;
{
sort (By,1, ', B,)in ascending order;

f

find the smallest number B, in the backup area satisfying B, > By;
exchange B, with B, ;

output B;

End

1.2 Enumerating with state pruning

Enumerating all the permutations is both uneco-
nomical and unnecessary. As we mentioned before,
many permutations can be pruned during the
enumerating process. If there is no matching constraint
being satisfied (i.e., all components are matched),
we regard m as the increasing point, which means the
next immediate permutation will be found and no
permutation is necessary to be pruned. If a certain
matching constraint is satisfied, we specify the
increasing point according to this constraint. For
instance, m = 3 and n = 5, the first state is 123 | 45.
If there is a vertex matching constraint R.(1,1D)(.e.,
1 cannot be put in position 1), we do not compute the
next permutation by nextpermutation (123 |45, 3) with
increasing point 3, since all permutations like 1 * % |
(* is digit between 1 and 5.) are illegal according to
this matching constraint. We have to obtain the next
permutation directly by next-permutation (123 | 45, 1)
so that B, is increased. Hence, we can directly jump to
the permutation of 213 | 45 and eleven states (124 | 35,
125 | 34, 132 1 45, 134 125, 135 | 24, 142 | 35, 143
| 25, 145 | 23, 152 | 34, 153 | 24, 154 | 23) are
skipped over. The whole process is described in
algorithm 2.

Algorithm 2 Enumerating with state pruning

Objective: to enumerate all the proper permu-
tations with state pruning.

Input: n, m, and the matching constraints
including some vertex matching constraints and some
edge matching constraints.

Output: all the proper permutations according to

the matching constraints.

238 Xu Xiaogang, Sun Zhengxing and Liu Wenyin

Begin

for(i = 15 i < =nsi++) B = i3
S = B;

while (S! = NULL)

i if (S satisfies some matching constraint r)
{ setd=4k(ifr€ R)orsetd =1 (if r € Rl,);

S = Next,-permutation (S);

f
Else
i output S;

f
S = Next,, -permutation (S);

|
f

End

2 Complexity Analysis and Performance
Evaluation

From the permutation process discussed in section
1, we can find that some improper permutation states
must be pruned according to the matching constraints.
In this section, we are interested in how many
permutations can be excluded using our constrained
partial permutation approach for efficient SRG
matching.
information

According to algorithm 1, the

recorded in the n-digit n-cardinality integer is
sufficient for the permutation enumeration process. The
space complexity is therefore O(n).

In algorithm 1, d plays a critical role in finding
the next proper permutation that represents a good
match. The number of pruned permutation states
depends on the value of d, i.e., if d is very small and
close to 1, the eliminated states are much more than
those when d is bigger and close to m. When d is
equal to m, that is, the increasing point is m, we will
calculate the next immediate permutation using this
increasing point and there is no permutation state that
can be pruned. Different SRGs may have different
matching constraint lists satisfied and may have
different d values for the next-permutation (B, d)
calculation. Consequently, there are diverse numbers
of pruned states for different SRGs. In other words, the
complexity of constrained partial permutation strategy

is SRG-dependent.

different matching constraints with different d values as

We refer to the existence of

a distribution of matching constraints.

Obviously, if there are no matching constraints
generated and no states can be pruned, it is the worst
case, in which the computational cost is P, , where m
is the number of components in the incomplete object

and n is the number of components of the complete

object in the matching process. Its computational
complexity is O(n!), which increases exponentially
with n. In the best case, there are at least m(n - 1)
different vertex matching constraints, and only n + (n
-+ +(n=-=m+1) = mQ2n - m + 1)/2
permutation checked. Its

computational complexity is 0(n*). In other cases,

states need to be

the number of the pruned permutations depends on the
specific SRG and it relates to m, n, and the
distribution of matching constraints.

In our Smart Sketchpad system, we have created
300 representative graphic objects, which have diverse
numbers of components ranging from 2 to 14. We use
each of the 300 graphic objects as a query and try to
match it with the rest 299 graphic objects in the
database. Obtaining the result, we mainly focus on the
average time cost of each query. The time cost during
the constrained partial permutation procedure is a much
concerned factor for evaluating its performance. The
time cost on a Pentium IIT 450 PC with 256 MB memory
in ms of our approach is listed in Tab.1.

Tab.1 Time used in SRG matching ms

n

2 3 4 5 6 7 8 9 10 11 12 13 14
2 041 0 0.200.190.08 0.08 0.22 0.11 0.14 0.06 0 0.36 0
3 N/A 0.03 0.07 0.15 0.27 0.11 0.09 0.09 0.39 0.29 0.59 0 0.29
4 N/A N/A 0.150.12 0.09 0.12 0.20 0.14 0.41 0.35 0.28 0.28 0.83
5 N/A N/A N/A 0.12 0.11 0.25 0.27 0.41 0.70 1.08 0.54 0.77 3.08
6 N/A N/A N/A N/A 0.16 0.16 0.30 0.5 0.88 1.01 0.36 4.02 5.90
7 N/A N/A N/A N/A N/A 0.14 0.25 0.73 0.72 1.08 0.21 2.13 5.86
8 N/A N/A N/A N/A N/A N/A 0.33 1.23 2.43 3.51 3.33 54.62 26.08
9 N/A N/A N/A N/A N/A N/A N/A 0.56 1.76 1.54 0 4.8 106.32
10 N/A N/A N/A N/A N/A N/A N/A N/A 3.11 1.34 0.67 0.33 1

—_
—

N/A N/A N/A N/A N/A N/A N/A N/A N/A 1.67 40 0 1.25
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 10 0 0

N/A N/A N/A N/A N/A N/A N/A N/A N/A NAN/A 20 80.25
N/A N/A N/A N/A N/A N/A N/A N/A NANANA NA 75

_ =
E-SNVS I S)

“N/A” means that we do not calculate it because
the value of m is bigger than that of n and this
conflicts with the definition of partial matching ' . The
zero values in the table are very small real numbers.

From Tab.1, we can find that the maximum time
used is 106.32 ms and the minimum time used is less
than 1 ms. The time used in the constrained partial
permutation procedure waves with m and n. It has no
mono-ascending or mono-descending trends while m
and n increase. However, the general trend is that the
time cost increases with m and n. To some extent this
confirms the conclusion we made above that our
strategy is SRG-dependent. Generally, the time cost is
much smaller than 1/10 s. The performance is

sufficiently fast for real-time interaction.

Matching spatial relation graphs using a constrained partial permutation strategy 239

3 Conclusion

SRGs have been used to represent the primitive
components and their relations within graphic objects in
our sketch recognition system Smart Sketchpad. It has
very strong representation ability in sketch processing.
To compute the similarity of two graphic objects
represented in spatial relation graphs, we proposed a
new approach, which uses a constrained partial
permutation strategy to prune most improper mapping
states during the matching process. The constrained
partial permutation strategy dynamically detects a set of
matching constraints in the matching process to predict
those improper permutations. Thus, we can save much
computational cost. According to our theoretical
analysis in this paper, the time complexity of our
approach is O(n?) in the best case, and O(n!) in the
worst case, though the worst case does not occur
frequently. From the experimental results we can see
that our approach is sufficiently efficient for real-time

sketch recognition.

References

[1] Foggia P, Sansone C, Vento M. A database of graphs for iso-
morphism and sub-graph isomorphism benchmarking [A]. In
Proc of 3rd IAPR-TC15 Workshop on Graph- Based Representa-
tions in Pattern Recognition [C]. Ischia, 2001.

[2] Bunke H. Recent developments in graph matching [A]. In
Proc of 15th International Conference on Paitern Recognition
[C]. Barcelona, 2000, 2: 117 - 124.

[3] Ullman J. An algorithm for sub-graph isomorphism (1. Jour-

nal of the Association for Computing Machinery, 1976, 23(1):
31-42.

[4] Corneil D G, Gotlieb C C. An efficient algorithm or graph iso-
morphism [J]. Journal of the Association of Computing Ma-
chinery , 1970, 17(1): 51 - 64.

[5] Schmidt D C, Druffel L E. A fast backtracking algorithm to
test directed graphs for isomorphism using distance matrices
[J]. Jowrnal of the Association of Computing Machinery,
1976, 23(3): 433 - 445.

[6] Mckay B D. Practical graph isomorphism [J]. Congressus Nu-
merantium , 1981, 30(1): 45-87.

[7] Cordella L P, Foggia P, Sansone C, et al. Evaluating perfor-
mance of the VF graph matching algorithm [A]. In: Proc of
10¢h International Conference on Image Analysis and Processing
[C]. 1999. 1172 - 1177.

[8] Cordella L. P, Foggia P, Sansone C. An improved algorithm for

Proc of 3rd IAPR-TC15
Workshop on Graph- Based Representation in Pattern Recognition
[C]. Ischia, 2001.

[9] Xu X G, Sun Z X, Peng B B, et al. A SRG-based online
composite graphic recognition strategy for sketch-based user in-

terface [A]. In: Proc of the 1st International Conference on
Machine Learning and Cybernetics[C]. Beijing, 2002. 723 -
728.

[10] Liu W Y, Qian W, Xiao R, et al. Smart sketchpad — an
on-line graphics recognition system [A]. In: Proc of the IC-
DAR2001 Conference [C]. 2001. 1050 - 1054.

[11] Liu WY, Jin XY, SunZ X. Sketch-based user interface for
inputting graphic objects on small screen devices [J]. Lecture
Notes in Computer Science, 2002, 2390: 67 - 80.

[12] XuX G, LiuWY, Jin XY, et al. Sketch-based user inter-
face for creative tasks [A]. In: Proc of Sth Asia Pacific
Conference on Computer Human Interaction [C].
2002. 560 - 570.

matching large graphs [A]. In:

Beijing,

BT 240 SR B0 HD5 H0 23 5 W 10 5 1] 36 7% P T R B A 5

Hruen)!

FhESE!

x| S Ep?

(AFRFHANBEHEABDZEELRE, &R 210093)
C AEBRTRF M F R, TAEE)

h'%i E AIRBET —FATHRGFLEET X A B K FR % Z R KB [T fd 2P

AR 2 ERRY RFMNTR

EIRM L AT I BLK A 69 B KA A AR S

s Akt TRk 8 o) I
B % A A KR PRSE RSN ARBEE L

TR EREA 0(n®), BILFR Y R AW ZIRE LT oM L 45 A
FEHE O(n) TR BMF RO ELEEME B FLERIRA £ 4% Smart Sketch-

@iw:,\,,‘ FRAZ A A B 69, TR RS
DT, % R AL R

O(n!); =R A &E

pad P BUF T ARIF AR A 2R

KEIF TALEAE,; BB 4 RGIHEE; BFHIRA

hE 4 ES TP391.4

