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Abstract :

The finite time thermodynamic performance of a generalized Carnot cycle, in which the heat transfer between the

working fluid and the heat reservoirs obeys the generalized law Q oc (AT)", is studied. The optimal configuration and the

fundamental optimal relation between power and efficiency of the cycle are derived. Some special examples are discussed.

The results can provide some theoretical guidance for the design a practical engine.
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In the analysis of finite-time thermodynamics or

el . [1-8 .
minimization” ™,  the basic

entropy  generation
thermodynamic model is the so-called “endoreversible
Carnot engine”, in which only the irreversibility of a
finite rate of heat transfer is considered. A major
objective  of finite-time thermodynamics is to
understand irreversible finite-time processes and to
establish the general and natural bounds upon the
efficiency or maximum work for such processes.
Another primary goal of finite-time thermodynamics is
to establish general operating principles (e.g., the
path that the system should follow for maximum
efficiency, work or chemical efficiency) for the system
which serves as a model for real processes.

It is often the case in practice that the power is
generated from heat, which is carried by a finite
amount of materiel with finite heat capacity, rather
than from the heat extracted from an isothermal and
infinite reservoir. In the reversible (infinite-time)
limit, the cycle, which extracts the maximum work
from a finite heat source, is qualitatively different from
the Carnot cycle, and its theoretical efficiency is

[9]

considerably smaller ™ . For the endoreversible cycle,

the research on the effect of the finite heat reservoir on
the performance includes two aspects: The first is to

determine the optimal performance of the given finite

thermal capacity cycles, such as Carnot cycle™",

Rankine cycle™, Brayton cycle®™™, etc. The
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optimization of the first aspect may be carried out with

the fixed heat input'
[11-15]

or with the variable heat
input The second is to determine the optimal
configuration of heat engines with the given conditions.
For example, the optimal configuration of an
endoreversible constant-temperature heat reservoir heat
engine is the Curzon-Ahlborn enginem], and the
optimal configuration of Newton’s law system (heat
transfer between working fluid and the heat reservoirs
obeys ) oc (AT)) variable-temperature heat reservoir
heat engine is a generalized endoreversible Carnot

178050 which  the temperature of the heat

engine
reservoirs and the working fluids change exponentially
with time and the ratio of the temperatures of the
working fluid and the heat reservoir is a constant. The
optimal performance of a generalized Carnot cycle for
another linear heat transfer law Q o (1/T) was
studied in Ref.[19]. The effect of heat leak on the
optimal configuration for Newton’s law system heat
engine is studied in Ref. [20]. These works found that
the finite nature of the reservoirs is indeed an important
feature which must be taken into account in many
energy conversion systems of practical interest,
because the optimal cycles and performances are
different in systems with finite and nonisothemal
reservoirs versus those with infinite isothermal
rEServoirs.

In this paper, the optimal configuration of a heat
engine is studied further. It is assumed that the heat
source has finite and constant heat capacity, that the
only irreversibility arises from heat resistances, and
that the heat transfer between working fluid and the
heat reservoirs obeys the generalized transfer law Q o

(AT) m[21-25] .

The fundamental optimal performance



276 Zhu Xiaoqin, Chen Lingen, and Sun Fengrui

between the power output and efficiency of the
generalized heat engine is derived in this paper. Some
special examples are discussed. The results can
provide some theoretical guidance for the design of

practical engines.
1 Heat Engine Model

The generalized engine model and its surroundings
to be considered in this paper are shown in Fig.1. The
following assumptions are made for this model. The
system adapted is a working fluid alternately connected
to a hot source with finite heat capacity and to a cold
sink with infinite heat capacity. The engine operates in
a cyclic fashion with fixed time 7 allotted for each
cycle. The high-temperature heat source is assumed to
have constant heat capacity C, its temperature is given
by T.(¢), and its initial temperature is given by Ty .
For simplicity the cold sink is assumed to be infinite in

size and therefore it has a fixed temperature T .

Finite T (¢
hot source c (1)
01
Engine 174
2
Infinite cold Ty
reservoir

Fig.1 The model of the engine

The heat transfer between the reservoirs and the

working fluid obeys a generalized heat transfer law
o« (AT)" [1-25] Therefore, one has

0 = | Ki(OIT.(0) - T(0)]"de (1)
0. = [ K1) - 11" 2)

where T'(¢) is the temperature of the working fluid,
Q,(i = 1,2) is the heat flux from the i-th reservoir to
the working fluid and K;(¢)(i = 1,2) is the thermal
conductivity for heat transfer between the i-th reservoir
and the working fluid. At ¢ = 0, the working fluid is in
contact with the high-temperature heat source and is
separated from the low-temperature heat sink by an
adiabatic boundary. At a later time ¢, (0 < ¢, < 7),
contact with the heat source is broken, and the working
fluid is placed in contact with the heat sink.
Therefore, K,(t) and K,(¢) can be written as

(1) = {Kl O<t <ty (3)

<
0 Lh<t<rT

<t

K ={, (@)

K, Ly

where K, and K, are constants.

<
<t<rT

From the first law of thermodynamics, the power
produced is given by
W=-F+K@IT(G)-T0)]" -
K()LT() - 11" (5)
where E is the total energy of the working fluid. The
total work produced in one cycle of duration 7 is
W= | KT - 7)) -
K()[T() - T )" ide - AE (6)
where AFE is the change in total energy of the working
fluid. Since the engine works cyclically, AE over the
full cycle must be zero. Hence, the total work done

along one full cycle is

W= "KL - 101" -

| Koir - 11ma (1)

The change rate of the entropy of the working fluid
1s
K\(DIT, (1) - T()]" - K()[T() - T 1"

S = ()

(8)
Since the engine operates cyclically, the change
in the entropy of the working fluid over one full cycle

period is zero

s Ky (O[T (1) - T()]™ = K ()[T() - T )™
85 = JO ()

dt =0

(9)

Furthermore, since the heat capacity of the hot
source is assumed to be constant, one has

dQ, = - CdT (1) (10)

Combining Eqs. (1) and (10) gives the constraint
equation on the time rate of the change of the
temperature of the high-temperature heat source in the
following equation

CT (1) + K (D[ T.(1) - T()]" =0 (11)
where T (¢) = dT.(¢)/d¢.

2  Optimal Configuration

2.1 The generalized analytical solution

The problem now is to determine the optimal
configuration of the model cycles in which the
maximum work output is obtained under a given cycle
time 7. Using Eqs. (7), (9) and (11), one has the
modified Lagrangian
L=K@[T()-T)]" + K@[T (1) - T )" +
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MK )T (1) - T()]" - K (D[ T() - T ]" ]
T(t) *
piCT (1) + Ky ()[ T (1) = T()]" | (12)
where A is a Lagrangian constant, and /u(t) is a
function of time.

The path for the working fluid (as specified by
T(t) and S(t)), which results in the maximum work
for a given time internal 0,71, may now be obtained
from the solution from the Euler-Lagrange equations.

The Euler-Lagrange equations are given by
d d
. (13)

AT(r) ~ delaT(r)
and
IL di JL
9Tx<z>‘&[aTx<t)]=0 (14)

Combining Eqs. (12), (13) and (14) gives:

[T.(¢) = T()]T(0) 1 = alm)
O0<t <t (15)

m—ALT(t) = T T (1) +% =0

Lh<t<rtT (16)
where a(m) is a constant dependent on m .

Egs. (15) and (16) are the major results of this
paper. They determine the relation between the
temperatures of heat reservoirs and the working fluid.
Using Eqgs. (11), (15) and (16), one can derive both
the heat reservoirs and the working fluid temperatures
versus time characteristic, i.e., the optimal configu-

ration of the heat engine cycles.
2.2 Analysis for special cases

Casel m =1

In this case, the heat transfer law obeys Newton’ s

law. Combining Eqs. (11), (15) and (16) gives

K
Tx(t):{THexp[—(l—/z)Clt] O<t <ty

vT', L<t<T
(17)

and
T(t) = uT (1) (18)

where v and u are constants. Eqs.(17) and (18)
indicate that the temperatures of the high-temperature
heat source and the working fluid decrease
exponentially with time in the time interval {0, t b,
and the ratio of the temperatures of the working fluid
and heat source is a constant. This configuration is the
same as the hat engine configuration obtained by
Ondrechen, et al.'” when K, = K, and it can be
called as a generalized endoreversible Carnot heat

engine cycle.

Case2 m =1.25

Dulong and Petit found that the heat transfer
coefficient is proportional to (AT)" when they
researched Newton’s law of cooling in 1887, hence @

o« (AT)LBLZZJ )

transfer analysis in which forced convection is not
[22]

It is applied broadly in the heat

dominant ™. In this case, the exothermic process is
still a constant temperature process. The varying laws
of T.(t) and T(t) in the heat absorbing process
become complicate and follow the below relations
8
[T.(t) = T()]T()™ = a, (19)

5

T (1) = K,[T (1) - T(¢)]* (20)

where a, is a constant.

3 Fundamental Optimal Relation

Combining the change in the entropy of the
working fluid heat absorbing process
¢ )
CTy

and the condition of internal reversible, one can

ds, = Cln(l - (21)

introduce an equivalent temperature of hot reservoir
¢ 0

ds, =~ 0, )
Cln(l - T,

and an equivalent temperature of working fluid at

Ty =- (22)

heat-absorbing process

o
Q>

where T, is the temperature of working fluid at

T, = (23)

exothermic process. Therefore, one can derive

Qi = Ki(Ty - T/)" (24)

Qy = Ky (T, = T)" (7 = 1)) (25)
T,

n=1- (26)

where 7 is the efficiency of the heat engine cycle.
Combining Eqs. (22) —(26) gives the power output

of the engine as
Q-0 I
P = f = Kl ﬁ{ﬁ
K i 5
K, [(1 - 77)T1* - TL]m

Taking the derivative of P with respect to T, and

(1-7) (27)

setting it equal to zero yields
- AT, + T,
-9+ A4
Substituting Eq. (28) into Eq. (27) yields

N TA m
P:Klv(TH_ﬁ) .

(28)
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1

w( K T+m —(1+m)
[1 £ (1= q)im(f;) ] (29)

where
1
e [(1 + 77)2K1]m
=7 =%
Eq.(29) is another major result of this paper. It

(30)

determines the optimal relation between power output
and efficiency for the fixed heat input (), . It is termed
as the fundamental optimal relation for the generalized
Carnot engine.

Taking the derivative of P with respect to » and

setting it equal to zero yields
T,

’7P=1‘%{\/[(m‘1);§ T

(m-1) 7t} (31)

where 7, is the efficiency bound of the heat engine at

2
] +4m

maximum power output P, .

Since Ty in Egs. (29) and (30) is a function of
Q,, the fundamental optimal formula is related to the
given (), . It is independent of (), only if C approaches
infinite.

This result indicates that the influence of finite
optimal

heat capacity rate heat source on the

performance of an endoreversible cycle can be
expressed by an equivalent temperature, and that T}
does mnot depend on the heat transfer law. The
introduction of the equivalent temperature T} can turn
the finite source cycle into an infinite source cycle
when the optimal performance is discussed. In this
case, however, the configuration of the cycle is not
Carnot type because the heat-absorbing process is not
an isothermal process. The temperature of the hot
source varies with f time. The optimal configuration is
Carnot type only when C — ® (i.e., T (1) = Ty =
a = constant).
The relations between

optimal power and

efficiency with different m are shown in Fig.2 for fixed
Q,with K,/K, =1, Ty = 1200K, 7, = 350K and
C = 10kJ/(kg+ K). One can see that the bigger m is,
the smaller the efficiency is at P = P

max *

4 Conclusion

In practice, heat reservoirs are generally of finite
size with finite heat capacity. Thus the problem of opti-
mal configuration from which the maximum power is
obtained with finite heat capacity is important. The

finite time thermodynamic performance of a generalized

L 1 1 1 1 1
00 0.1 0.2 03 04 0.5 0.6 0.7

]
Fig.2 The relation between P/P,,, and 7

Carnot cycle, in which the heat transfer between the
the heat obeys a
generalized law Q o (AT)™, is studied. The optimal

working fluid and reservoirs
configuration and the optimal relation between power
and efficiency of the cycle are derived. The special
examples provide comprehensive analysis of how heat
transfer law influences the performance of the
generalized heat engine. The results include those
obtained in recent literatures and can provide some

theoretical guidance for the design of practical engines.
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