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Abstract:

To gain superior computational efficiency, it might be necessary to change the underlying philosophy of the

simplex method. In this paper, we propose a Phase-1 method along this line. We relax not only the conventional condition

that some function value increases monotonically, but also the condition that all feasible variables remain feasible after basis

change in Phase-1. That is, taking a purely combinatorial approach to achieving feasibility. This enables us to get rid of ratio

test in pivoting, reducing computational cost per iteration to a large extent. Numerical results on a group of problems are

encouraging.
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The simplex method moves on the polyhedron,
from vertex to adjacent vertex along edges while
increasing (without the loss of generality) the objective
function value. Based on such a philosophy, standard
simplex-like methods (either of Phase-1 or Phase-2)
work under the following conditions:

(D Some function value increases monotonically;

@ All feasible variables remain feasible after
basis change.

P. Wolfe'" first proposed the idea of dropping @ .
In his composite Phase-1 approach, the work of
achieving feasibility is combined, to some degree, with
the work of achieving optimality whereas, instead of
condition @, the amount of total infeasibility is

Maros>  and K.Belling-Seibm

suggested their successively improved schemes to

reduced. Istvan
reduce computational cost at each iteration. However,
these methods still require extra computational effort
per iteration although they usually require fewer
iterations.

On the other hand, as far as the authors know, all
existing simplex variants work under condition (.
Assuming non-degeneracy, the function will increase
strictly monotonically, guaranteeing the termination of
the solution process; yet, this is of only conceptual or
pedagogical interest because the non-degeneracy
assumption does not coincide with the fact that cycling
occurs very frequently in practice.

In order to gain more superior computational

efficiency, some new algorithms have been developed
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philosophy of the simplex methods further, not only
relaxing condition (D but also condition @ in Phase-1,
that is, taking a purely combinatorial approach to
achieving feasibility. This also enables us to get rid of
the ratio test in pivoting, reducing computational cost
per iteration to a large extent.

In section 1, we propose some ratio-test-free
pivoting rules, the use of which results in different
Phase-1 procedures. In section 2, as an example, we
incorporate one of the rules with the classical Phase-2
of the simplex method to form a general purpose
algorithm. Finally, in section 3, we present numerical

results of our preliminary tests.
1 Phase-1 Pivoting Rules

Consider a linear programming problem in the

following form:

max x,
s.t. Ax = b (1)
2 =0 j=1,",n
where A € R™" with rank(A) = k(k < m < n).
Using notation
X = € X, A := [_1 CT]
0 A

we construct the following linear programming (LP)

problem from (1)

max x,
s.t. Ax = b (2)
% =0 j=1,",n

where.A € RV wwith rank(A) = k + 1(k =m
+l<n+1),andx :=(xox")", b:=(0b")". We
will not handle (1) directly, but handle (2) instead.

In the sequel, the i-th row of a matrix * will be
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designated by ( +),. Let B € RDXUHD e the

current basis with some index set
Jb’ = {j() Eo’jl’“"jk} <3)
and let B* € R™*("* Lo the Moore-Penrose inverse

of B. Then x; , i = 0,1,**+, k are the related basic

set of variables, and By b is the objective function
value at the current basic solution. Introduce notation
Jy = 11,0t = Jy (4)
Suppose that the basis B is infeasible, i.e., the
row index set
I=1{il(B")b <0,i =1,k (5)
is nonempty. For making a basis change, the following
ratio-test-free pivoting rules may be employed.

Rule 1 Select the pivot-row index r such that

r = argmin%(B”)ib‘ < (6)

If the column index set

J = argmin{j| (B"),a, < 0,j € Jy! (7)
is nonempty, select the pivot-column index s such that

s = argmin%(3+),aj|j€ Ji (7)

Suppose that r and s have been determined. Then
the according new basis can be written as

B=B+(a -ae, (8)
where e, is the identity (k + 1)-vector with the r-th

component 1; and from Sherman-Morrison formula we

know that its Moore-Penrose inverse is

— . (e,-B" a)(B"),
B =B+ (B} )a,

Thus one step is completed. The step is repeated until

(10)

either set [ is empty, indicating achievement of
feasibility, or / is nonempty but J is empty, indicating
infeasibility of the linear program.

Let us examine effects of such a basis change. The
value of the new basic set of variables can be
represented in terms of their predecessors, i.e.,
(B)b - ((B"),b/(B").a,)(B")a,

1 =0, k;i 271
(B"),b/(B").a,

(E+>ib =
(11)

Since the variable x;, becomes nonbasic, its value
!

increases from (B*) b < O up to 0; on the other hand,
the variable x, becomes basic, and its value increases
from O up to(B*),b > 0, where inequality results from
(11), (6) with (5) and (8) with (7). So, at the price
of not maintaining current primal and dual feasibility,
rule 1 eliminates one infeasibility at a time, involving
computation of two vectors only, and making the basis

change numerically stable due to favoring pivot with the

largest possible absolute value. However, it might be
more plausible to increase the value, if possible, or
otherwise to decrease it as little as possible. This idea
leads to the following variant.

Rule 2 Select r by (6). If set J defined by (7)
is nonempty, select s such that

s = argmin{(B"),a;|j € JI (12)

Because of possible choice of a small pivot, the
preceding rule can be numerically unstable. This
shortcoming can be avoided by the following rule:

Rule 3 Select r by (6). Let & > 0 be a small
number and J defined by (7) be nonempty. If the

following set

J = 1{jl(B").a <-05,j € Ji (13)
is also nonempty, select s such that

s = argmin{(B")ya; [j € J'} (14)
else such that

s = argmin{(B"),a;|j € J| (15)

In addition to the most infeasible variable «; , it

seems to be attractive in row pivoting to take into
account the other infeasible variables as well as x,.
The extra computational effort involved in doing so is
limited. Consider the sum
Xy + Z x; = vb - z(vaj)xji (16)
i€I-1irt J€ Iy

where v is the row vector,

v=(B)+ > (B, (17)

Al
giving the measurement vh of the other infeasibility,
combined with the value of x,. The basic idea of the
following rule is to increase the value of the preceding
sum, or at least to decrease it as little as possible.

Rule 4 Select r by (6). If set J defined by (7)
is nonempty, select s such that

s = argmin{ va, lj e Ji (18)

Also, to avoid too small a pivot being chosen, the
following variant may be employed:

Rule 5 Select r by (6). Let & > 0 be a small
number and J defined by (7) be nonempty. If set J’
defined by (13) is also nonempty, select s such that

s = argmin{va, |j € J'| (19)
else such that

s = argmin§(3+),aj lj € Ji (20)
2 General Algorithm

Now we can describe the general algorithm for
solving the linear programming (2). After achieving
feasibility by using any of the rules, given in the

previous section, Phase-2 of the simplex method is
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immediately applicable to this purpose. As an
example, the following model algorithm is formed by
combining rule 1 with the classical Phase-2, where
Phase-1 consists of steps 1 to 6, whereas Phase-2
consists of steps 7 to 12.

Algorithm 1 Given the Moore-Penrose inverse
B € RV D of an initial basis, this algorithm

solves linear programming (2) .

Step 1 Go to step 7 if set [ defined by (5) is
empty;

Step 2 Determine pivot-row index r by (6);

Step 3 Stop if set J defined by (7) is empty;

Step 4 Determine pivot-column index s by (8);

Step 5 Update B* by (10);

Step 6 Go to step 1;

Step 7 Determine s such that s =

argmin{ (B )ya;|j € Jyl;

Step 8 Stop if (B )ya, = 0;

Step 9 Stop if set I’ = {i/(B")a, >0, i =
Lo, k} is empty;

Step 10 Determine r such that r =
argmin{ (B*),b/(B*)a | i € I'};

Step 11  Update B* by (10);

Step 12 Go to step 7.

Based on discussions made in section 1, and
well-known properties of the simplex methods, we
state:

Theorem 1 Assuming finiteness of Phase-1, and
non-degeneracy throughout Phase-2, the algorithm
terminate at either (D Step 8, with an optimal solution
reached; or @ Step 3, indicating infeasibility of (2);
or @ Step 9, indicating upper unboundedness of (2) .

The question remaining now is whether or not
Phase-1 is finite. Because of finiteness of the number
of bases, it is finite if and only if cycling occurs, i.e.,
some basis is repeated infinitely many times. We point
out that all pivoting rules, given in section 1, do not
monotonically increase (or decrease) some function
value, and it has not been possible to rule out the
possibility of cycling. However, like the well-known
cycling risk for the classical pivoting rule, this might
not be important in practice; and it might be very
likely for cycling to occur in practice only rarely, as is

supported by our computational experiment.
3 Computational Experiment

In this section, we report numerical results of our
computational tests, giving some insight into the
behavior of the new method.

We designed a crash procedure, based on the

plausible characterization of optimal basis”, to create

the Moore-Penrose inverse of an initial basis as input.
The procedure is embodied in the model algorithm
below.

Algorithm 2 Given pivoting indices a;, j = 1,
>, n, and a small number ¢ > 0, this algorithm
produces a basis B and its Moore-Penrose inverse B*
with “e-rank” k,

Stepl Set Jy = {1,

,n! and determine s, =

0;

Step2 SetA, =-e,and A," = - e;;

Step3 Set k = 0and r = 0;

Stepd Set bk = k + 1;

StepS5 Setr =r + 1;

Step 6 Determine s, = argmax% a \j -~ ]N} ;

Step7 Set Jy = Jy - Is |3

Step 8 Compute d, = Ak71+asr and ¢, = a, -
A d

Step9 If ||c,,,||22<e,andr<n,gotostepS;

Step10 If [ ¢, |, = ¢, set A, = (A, | a,)
and compute A, = (%) ;

k

Step11 If & < m and r < n, go to step 4;

Step 12 Set B = A, and B" = A,", and stop.

Algorithm 1 can serve as a frame to construct
variants by employing different pivoting rules. In our
tests, the following 7 codes in Fortran 77 were tested,
and compared with the revised two-phase simplex
algorithm using Dantzig's original rule:

D Algorithm 1 with (8) replaced by (18);

@ Algorithm 1 with (8) replaced by (19), (20)
with (13), where 6 = 0.01;

@ Algorithm 1 with (8) replaced by (14), (15)
with (13), where & = 0.1;

@ The same as @, but where 8 = 0.1;

(® The same as @), but where & = 0.01;

© Algorithm 1 with (8) replaced by (12);

@ Algorithm 1.

The machine precision was about 16 decimal

places. For each code, the tolerance used was 10°°. In
algorithm 2, ¢ = 107 was taken. The test problems fall
into three groups. The first group includes 91 problems
with strict inequality constraints and up to 22 decision
variables and constraints; the second involves 4 larger
sparse problems in the standard form, for each its price
coefficients were simply taken to be pivoting indices
used as inputs of algorithm 2; and the third are three

Klee-Minty problems.
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In terms of optional the number of iterations
required, numerical results obtained are summarized in
Tab.1, where the 4 problems of group 2 are designated
by P;, P,, P; and P,, and Klee-Minty problems by
KM, , KM, and KM;, respectively.

In Tab.1, the 8 codes are ranked according to
totals of iterations required for each on 91 problems of
Roughly

coincides with the case on group 2 or on group 3.

group 1. speaking, such ranking also
Obviously, the performance of the classical method,

which is on the rightest of the table, is inferior to all

Tab.1 Computational

the new codes on problems of each group overall. It
might be worth mentioning that this is the case even for
each of the problems only except one: P, of group 2
when solved by using ©. We point out that
computational cost with algorithm 2 alone is limited,
and that cost per iteration, associated with the new
codes, is significantly less than that associated with the
classical method.

As far as only new codes are concerned, those
with a rule taking all infeasible variables as well as x,
into account performed better than the others.

results in iterations

Problems o) @ @ @ ® © @ Dantzig’ s
Total for group 1 329 330 334 338 347 356 363 1026
Pi:m =27 n =51 7 5 11 5 12 13 8 27
Py:m =28 n = 56 4 4 5 4 5 6 4 38
Py:m = 55n =137 51 58 52 57 81 85 59 170
Py:m =56 n = 138 116 118 111 118 166 293 148 172
Total for group 2 178 185 179 184 264 397 219 407
KMy:m =n =38 11 11 11 11 5 5 11 255
KMy:m = n =10 15 15 15 15 11 5 15 1023
KMy:m = n =12 19 19 18 19 12 5 19 4095
Total for group 3 45 45 44 45 28 15 45 5373

Finally, we report that the test problems are all
arbitrarily collected ones, and no cycling has been
observed so far. We conclude that these results do
show promise of the new method although further

computational tests are expected to be done.
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