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Abstract :

Stationary even periodic solutions of the Swift-Hohenberg equation are analyzed for the critical parameter £ =

1, and it is proved that there exist periodic solutions having the same energy as the constant solution v = 0. For k < O,

some qualitative properties of the solutions are also proved.
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In this paper we shall study the Swift-Hohenberg

equation
(’)u (72 2 s
a—t:ku—(1+a—xz)u—u‘ EFER (1)

This equation was first proposed in 1976 by Swift

and Hohenberg'' as a simple model for the

Rayleigh-Bénard instability of roll waves. The
Swift-Hohenberg equation has been studied a great
deal, both analytically and numerically (see Refs.[2 —
10]).

In this paper we focus on stationary periodic
solutions, that is on the periodic solutions u(x) of the

ordinary differential equation (ODE) .

u’ +2u” + fi(u) =0 (2)
where the source function f, is given by
fils) = (1= k)s + 5 (3)

In proving the existence of periodic solutions, we
use a shooting technique. We examine only even
solutions of Eq.(2), and hence they suffice to con-
struct solutions on R™ and continue them to R™ as even
functions. We then study the initial value problem

2 + (- Ku+u’ =0 x>0 (4)

(w,u ,u",u”)(0) = («,0,8,0) (5)
where « and [ are parameters which need to be
assigned.

Our analysis will make extensive use of the fact
that Eq. (2) has a first intergral, the energy identity.
When we multiply (2) by 2u’ and integrate the
product, we find that each solution u satisfies the
relation

i %(u,,y + (W) + F(uw)=E  (6)
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where E, the energy, is a constant and

Fu(s) = Lm,:)dt ke e

Obviously, the trivial solution © = 0 has energy
E = 0. When k£ < 1, being interested in branches of
solutions bifurcating from u = 0, we shall focus on the
periodic solutions having zero energy.

When we substitute (5) into the energy identity
(6), and we assume E = 0, we find that the initial

data are related through the equation

B ==xv2F(a) (8)
where we have suppressed k£ from F,. By symmetry,
solutions come in pairs: if u is a solution, then so is
— u. We may therefore assume without loss of
generality that u(0) = @ > 0 throughout this paper and
we denote the solution by u = u(x,a).

When k& < 0, L.A.Peletier and W.C.Troy have
proved the following result""’ .
Theorem 1 If £ < 0, then there exists no
nontrivial periodic solutions of Eq.(2).

Plainly, when k£ < 0, there exists a unique
constant solution u = 0 of (2). Since there exists no
nontrivial periodic solutions of (2), we shall be
concerned with the questions of existence or
nonexistence of mnonconstant solutions of (2) which
monotonously tend to the constant solution u = 0 «
—+ o . We require that

(u,u ,u",u”)(x)—(0,0,0,0)

We shall establish some qualitative properties of

as x >+ o (9)

the solution u(x,a) and prove that there exists no a
€ R such that the initial value problem

u' +2u" + (1 -Ku+u =0 x> 0(10)
(u’u/’u”’u”,)(o) = (a70’,8’0) (11)
where B = - v/2F(a) has a monotone solution u

which satisfies (9) at infinity.
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Define
x;(a) = suplx > 0:u(x,a) >0on[0,x)f (12)
Theorem 2 If & < 0, there exists no a € R*
such that the initial value problem (10) and (11) has a
monotone solution which tends to the constant solution

u = 0 as x >+ % . More precisely, we have

(a) %, (a) <% for any « € R

(b) HEI}L"‘(O‘) = 0;

(¢) W (x,a) <0for0 < x < %, (a);

(d) u(x,(a),a) =0, /(x,a) < 0 in a right-
neighbourhood of x, (a).

When 0 < £ < 1, to construct even periodic
solutions of (2), we take B = — V2F(a). We shall
seek a positive value of a such that the solution u(x,

a) has the properties:

W(x,a) <0, u(x,a) >0 O<a< T
(13)
u(T,a) =0, «'(T,a) =0 (14)

for some finite T = T(a) > 0. It follows from (13)
and (14) that u is antisymmetric with respect to the
point x = T, and so

u(T - x) == u(T + x) O0<x< T (15)
Therefore u can be antisymmetricly continued as a
solution of (2) on [0, 2T].

symmetry of u around x = 0, we conclude that u can

Remembering the

be continued as an even solution on [ - 27T, 2T], and
finally as a periodic solution of (2) on R with period
4T.

Recently, Y.Tao and J.Zhang:m have constructed

the periodic solutions of (2) for the critical parameter
k:0<k<landl < k < % In this paper we shall

construct even periodic solutions of Eq.(2) for £ = 1.
Theorem 3 Suppose that £ = 1, then there exist
even periodic solutions of Eq. (2) which have the same
energy as u = (. Moreover, u has countably infinite
zeros and u is antisymmetric with respect to these
Z€T0S .
The plan of this paper is as follows. In section 1

we prove theorem 2 for & < 0. In section 2 we

=

construct even periodic solutions for & = 1 and prove

theorem 3 by a shooting argument.

1 Qualitative Properties of the Solution: k
<0

~=

In this section, we investigate the initial value
problem
20 + (1l Ku+u’ =0 x>0

(16)

(u,u ,u",u”)(0) = («,0,83,0) (17)
where @ > 0 and B(a) = -V 2F(a).

We shall prove some qualitative properties of the
solution u(x,a).

Lemma 1l let £ < 0. Then for any « € R*

x(a) < =

2

where x, (a) f;‘sup{x >0:u(x,2) >00n[0,x)}.
Proof letv = al’ then the problem (16) and

(17) yields
W20 + (1 K)o+ =0 x>0 (18)

(v,0,0",07)(0) = (1,0, -/ (1= k) + %az,o)

(19)

. BIS
For contradiction, we assume that x,(a) = —

A

In view of the initial condition (19), one integration of

(18) shows that
V420 <0 on (0,x,(a)]

Thus, if we set w = v’ , and remember the initial

conditions again, we obtain

w +2w < 0 on (0,x,(a)] (20)
w(0) = 0.0 (0) ==/ (1= k) + 2> (21)
1 -k 1 5, .
Set h(x) = 5+ 4@ sin (V2x), and
define the auxiliary function
_ w(x) Ed
Then
y = h?W(x) (23)

where W(x) = w (x)h(x) — w(x)h'(x) is the
Wronskian of w and h. Note that

W) =0, W = wh —wh” <0 on (0,\/%)

(24)
since we assume that x, (@) = —=. Hence W(x) < 0,
V2
and so ¥ (x) < 0for0 < x < J% Therefore
y(x) < y(0) = Tim W4~
v0
0<x< % (25)
By L’ Hopital’s rule, and
v (x) < - 15k+%a2 sin(v/2x)
0<x< = (26)

Sl
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Integrating over (0, x ), this yields

p(2) < v (x >"-“f1+;«/(1_k>+%a2-

[— 1+ cos(/2x)] 0<x <=~ (27)

V2
Note that for £ < 0 and any « € R*

-1 <1- 2 <1

= k) + %az
So, we can define
: ]
(1= k) +4a?
2

To( ) =
(28)

arccos[ 1 -

J2

Then,

T

0 < 7o(a) <«/§

We conclude from (27) and (28) that
v(zro(a)) < v (7o(a)) =0

However, v(7,(a)) = 0 since we assume that x, («)

> = Thus we get a contradiction, so that x,(a) <

Sl

T
—, as asserted.

V2
Next, we shall prove that x,(a) has no positive
lower bound. In fact, u(x,a) — 0 rapidly when « is

large enough.

Lemma 2 let bk < 1. Then
lim x,(a) = 0

Proof The proof of this lemma is based on a
scaling argument. It is convenient to scale the variables
when « is sufficiently large. Set

t = a'x,v(t) = a'ulx) (29)
where h and [ are two constants to be determined
later. Then problem (16) and (17) becomes

0" 4227 + (1= k)a™ + a7 =0

t >0 (30)
1](0) — al+1
’U/(O) = 0
/ (31)
’U”<O) - _ al—2h+1 (1 _ k’) + %az
1]”/(0> — 0
Let h and [ satisfy
{4h +21 =0
l+1=0
which yields h = 1/2 and [ =~ 1. Let V be the

solution of the limit problem obtained from problem
(30) and (31) by letting « tend to infinity:
V==V 150 (32)

V', V)(0) = (1,0, /2 0) (33)

V.V,
( 5

Then, since the problem (30) and (31) is a regular
perturbation of problem (32) and (33), it follows that
(v, v, 0", 0")(t,a) = (V,V, V., V")(t)

as @ —> ® (34)
uniformly at compact intervals. Plainly, as long as V

>0
V2

V”<O,V”<—2,V’<O (35)
Define
t; = supit > 0:V >0 on(0,1)]
We shall prove that
1 < 27 (36)

integrating (32) and using the initial

conditions (33), we find that
V(1) =_j V(s)ds < 0
0

In fact,

on (0,1, ]

In view of the initial conditions (33) again, successive

integrations yield:

V() <—g on (0,¢, ] (37)
V' () <—g on (0,¢, ] (38)
V(1) < 1‘22 on (0,1,] (39)

We conclude from (39) that t; < . In parti-

cular, we find that

1- gﬁ > V(t,) =0
which implies that (36) holds.

original variables and noticing (34) and (36), we find

Returning to the

that if a is large enough

n(a) < 2
i
which implies that lim x,(a) = 0, as asserted.
Lemma 3 Let £ < 0. Then for any « € R":
D ulx,a) strictly decreases on (0, x,(a));

@ u(x,a) strictly decreases in a

neighborhood of x, ().

(40)

right-

Proof of O
(16) and (17) yields

Let v = al’ then the problem

v+ 20 + (1 - kv +a*v° =0 x>0
(41)

(v,0",,07)(0) = (1,0, ) A= k) +— 01 0)
(42)

To prove (D, it is necessary to prove
v (x) <0 0<x < x(a) (43)
From the initial conditions (42) we see that for £ < 0,
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(v +20)(0) =2 -/ (1 - k) + f%az < 1}

(v +20)(0) =0
(44)
while 0 < x < x,(a)
(v +20)Y(x) == (1 = k)v - a*v® < 0 (45)
Hence, by (44),

(v +2v) <0 on (0,x,(a)) (46)
and using (44)
vV +20-1<0 on (0,%,(a)) (47)

If now we multiply this inequality by v", then, as
long as v < 0, we have

VY + 20 — v >0

or

7\2
[(vz) + 0 - v]' >0
In view of the initial conditions (42), we find that as
long as v = 0 and v < O,
w)*
2
If ¥/ = 0 at some point x, € (0,x,(a)), then (48)

and the continuity of the solution v(x) imply that

+v° -0 >0 (48)

v(x,) = 1, which contradicts ¥(0) = 1 and v' < 0 at
(0, xy) . This completes the proof of @D.

Proof of @ From (O and the definition of
x,(a), it is obvious that

u(x,(a),a) =0, v'(x(a),a) <0
Further, if u’(x,(a),a) = 0, the energy identity (6)
implies that

(x,(a),a) =0
Integrating (16) on (0, x,(a)), in view of the initial
conditions (17), yields

5 (

(@) a) == |

So, we conclude that u'(x,a) < 0O in a right-
neighborhood of x, (a).

a)
[((1-Ku+u’ldx <0

2 Periodic Solutions for k = 1

The construction of even periodic solutions
involves a detailed analysis of the initial value problem
W2 + (- ku+u’ =0 x>0 (49)
(u, v, u",u”)(0) = (a,0, - V2F(a),0) (50)
where @ > 0 is a shooting parameter. To find periodic
solutions, we need to seek a positive value of " such
that the solution u(x,a) has the properties:
(x,a") <0, u(x,a”) >0
0O<ax< T (51)

u(T,a") =0, (T,a") =0 (52)
for some finite T = T(a”) > 0. Then, u can be

antisymmetricaly continued as a solution of (2) on [0,
27].

conclude that u can be continued as an even solution

In view of the initial conditions (50), we

on [ - 2T,2T], and finally as a periodic solution of
(2) on R with period 4T. To find the above a” , we
need to study the relative position of zeros of u and u”
for the parameter a. We shall prove that u” vanishes
before u vanishes for sufficiently small @ > 0, and that
u vanishes before u” vanishes for sufficiently large a
> 0. Then, we use a shooting method, together with a
continuity argument, to prove the existence of a~ and
complete the proof of theorem 3.

Let u(x,a) be the solution of (49) and (50).
Then, because of the requirements stated in (51), we
define

7(a) = sup {a > 0:ur” <0 on[0,x)}

a € R (53)
It is clear from the initial conditions (50) that 7 is well
defined. In the following lemma we prove the
properties of boundedness and continuity of 7(a)
which are essential for our analysis.

Lemmad4 LetO < k < 1and « € R". Then

@O z(a) < =3

@ u(z(a),a)u’(r(a),a) = 0;

@ t is continuous at each « € R*.

Proof of D Suppose that 7 = % for some a €
R". Then v < 0 and u > O for all x > 0.Because
u'(0) = 0, this is impossible. Thus 7(a) < % on
R".

Proof of @
7(a) and the continuity of u and u”.

Proof of @ let «° € R', and let 7 =
7(a” ). There are two cases to be considered.

Casel u(z",a”) =0.Hulz ,a") =0,
then from the definition of 7 we know that u”(x,a” )
< 0on[0,7"). Hence, because ' (0,a") = 0, it

It follows from the definition of

follows that u'(z" ,a” ) < 0. Thus, we conclude from
the implicit function theorem that 7 is continuous at

*

a

Case2 u'(z7,a") =0.Iful(z",a") >0,
then v”(z" ,a” ) = 0. Hence, by the definition of 7,
we have ”(x,a”) < 0at [0,7"), and therefore in
view of the initial condition u’(0,a” ) = 0, we find
that ' (7" ,a” ) < 0. Thus, we can apply the implicit
function theorem again to prove that 7 is continuous at
a” . This completes the proof of lemma 4.

In the following, we shall prove that u vanishes
before u” vanishes for sufficiently large a > 0. In fact,
it follows from the proof of lemma 2 (see (29) —(36)).

Lemma5 letO < k < 1. Then
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u(z,a) =0, u/'(z,a) <0, u'(z,a) <0
for « € R sufficiently large.

Next, we shall prove that u” vanishes before u
vanishes for sufficiently small @ > 0. The coefficient &
is found to be a critical parameter and it plays an
important role in our analysis. Here we should indicate
that the proof of Y.Tao and J.Zhang ™ for 0 < k < 1
is based on a linearization argument, however, the
linearization method is no longer valid for £ = 1. For
this case, we follow the method in Ref. [13] and use
an auxiliary function technique.

Lemma 6 Let k& = 1. Then

ulz,a) >0, (z,a) =0, (z,a) >0
for @ € R" sufficiently small.

Proof It is convenient to scale the variables. Set

t =22, 0(1) = Tule) (54)
then the problem (49) and (50) yields
2
v+ == %1}3 t >0 (55)

(v, ,0",v7)(0) = (1,0, —%,0) (56)

Since v"(0) < 0, it follows that o”
right-neighborhood of the origin. Suppose that v" < 0

< 0in a

as long as v > 0. Of course, then v" < 0 as long as v
> 0. We shall show that this leads to a contradiction if
a € R" sufficiently small.

Set w = v”. Then, because v < 0 as long as v
> 0, we obtain

” 3a°

w o+ w = - 4112'>0
w’ m d_et——a—zzil—g
(©) = ma) £ - m( 2

here we take 0 < @ <2 and so m(a) > 0.
As a comparison function we introduce the
solution h of the initial value problem
K +h =0, h(0) =0, B(0) =
Plainly, h(t) = The Wronskian
W(t) = w'h — wh’' has the properties:
W) =0,W >0

Hence,

W= (L) >0
Thus, since w(¢)/h(t)—1as t—0" by L’ Hopital’s
rule, it follows that as long as v > 0 and A(t) > 0

w(t) > h(t) =
Here we note that A(¢) > 0if0 < a <v2 and ¢t € (0,
).

Successive integration yields

m(a)

m(a) sint.

as long as v > 0

as longas v > 0

m(a) sint

(1) > - ﬁi + m(a)(1l = cost) =
(57)
o
v (t) >—Zt—m(a) sint (58)
2
v(t) > 1—%t2—m(a)(l—cost) (59)
The right-hand side of (59) is decreasing, and so

% -R0-R)”

1—2a2—é>1—2a—a:1—3a>0

for0 < t < mif wetake 0 < a < 1/3 = min (V2,1,
1/3) . Therefore, our assumption implies that v/ < 0 on
(0,7).

However, we see from (57) and the continuity of v(¢)

v(t) > v(m) > 1 -

The continuity of »(t) yields +"(w) < 0

again that

v”(Tr) >

Z+m(a):i>0

242

so that we have a contradiction. Thus, we must

conclude that ¢ vanishes before v vanishes, which
means that

v(z) >0, v(z) =0

Returning to the original variables, we find that

u(z) >0, '(z) =0 (60)

Using (60) and the energy identity (6) at ¢ = 7,
one may easily assert that «”(z) > 0. This completes
the proof of lemma 6.

Now, by shooting techniques, together with
lemmas 4 to 6, we can prove theorem 3.

Define the functions

$o(a) = u(z(a),a), $,(a) = u'(z(a),a)

(61)

By lemma 4 and the continuity of u(x,a) on the
initial data, $,(a) and $,(a) are continuous on R* .

By lemma 6, there exists a small @; > 0 such that

$o(a) >0, $,(a) =0
Similarly, by lemma 5,

0<a < aq
there exists a large a, >
a, such that
$,(a) >0, $(a) =0
Define the sets
A = {a € R :u” = 0 before u = 0f
B {a € R*:u = 0 before u” = 0}
where v = u(x,a) is the solution of the initial value
problem (49) and (50).
DO AN B =
@ The sets A and B are both nonempty;
@ The sets A and B are relatively open in R" .
Proof of @ Part O follows from the definition

a > a,

Lemma 7
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of the sets A and B.

Proof of @ Plainly, (0,a,) c A,(a,, + ®)
c B.
Proof of @ Let ay € A, and let u, = u(x,
ay) and 7, = t(ay). Then

W (ty,a9) =0, ulzy,ay) >0

Because u and 7 depend continuously on a, there
exists a small constant & (0 < & < @) such that
u(z(a),a) > 0if ‘a - ao‘ < 0. According to the
definition of 7(a), we find that v’ (z(a),a) = 0 if
la = ay| < &. Thus the set (ay — d,ay + 0) C A.
So the set A is relatively open in R".

Similarly, we can prove that the set B is relatively
open in R" .

Proof of theorem 3 By lemma 7 and a result of
Ref. [5], there exists a continuum I' ¢ R* \ (4 U
B) . Tt follows from the definition of the sets A and B
that if « € I,

u(z(a),a) =0, v'(z(a),a) =0 (62)

Moreover, the definition of z(a) yields that if «
cr,

W(x,a) <0, u(x,a) >0 O<x < (a)

(63)
With the help of (62) and (63), one can easily

obtain the conclusions of theorem 3.
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