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Abstract:

Modeling non-coding background sequences appropriately is important for the detection of regulatory elements

from DNA sequences. Based on the chi-square statistic test, some explanations about why to choose higher-order Markov

chain model and how to automatically select the proper order are given in this paper. The chi-square test is first run on

synthetic data sets to show that it can efficiently find the proper order of Markov chain. Using chi-square test, distinct higher

order context dependences inherent in ten sets of sequences of yeast S. cerevisiae from other literature have been found. So the

Markov chain with higher-order would be more suitable for modeling the non-coding background sequences than an

independent model.
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It is widely noticed that the control or regulation of
gene expression is primarily determined by relatively
short sequences (termed with regulatory elements,
transcription factors binding sites or motifs) in
upstream or non-coding regions surrounding a gene.
But information about these motifs (for example where
they locate and how they work) is not well-known.
Extracting functional motifs hidden in voluminous
genome sequences is one of the grand challenges to
computational biology, but first of all it is very
important to model background distribution suitably.

Most popular probabilistic models published so far
have applied a simple independent model' ™', which
used the frequencies of nucleotides A, C, G, and T
in intergenic or input sequences to represent
background sequences. However, such an independent
model based on a single nucleotide can’t reflect the
complex structure of genome sequences and the context
of relationships between nucleotides.

In DNA, the presence of a particular nucleotide
usually has influence on its neighboring positions. So a
better way to evaluate the probability of generating the
site from the background model is based on Markov
chain.

Recently, some researchers have successfully
applied higher-order Markov chain to model their
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731 Here, only the specific issues

motif detection
associated with background model in motif detection
will be addressed. Liu, et al. (7] developed an extended
version of the Gibbs sampler called BioProspector.
They proposed the use of a context dependent Markov
background model with order from zero to three in a
Gibbs sampling algorithm. The probability of a site
being generated with their 3-order background model is
computed as

P(b;ybiyssbiy) = P(b)P(by, | b;) x

P (b, | bibii) P(b;s | bibiyibin) e x
P(biyp U biyiabiyrsbiis)

They illuminated the better performance of 3-order
Markov background model in detecting the RAP1 sites
of S. cerevisiae. Thijs, et al."™ also investigated the
improvement of Gibbs sampling performance to discover
the promoter regulatory elements of Arabidopsis
thaliana with a higher-order Markov background model
built on a set of carefully selected intergenic
sequences. Different from Liu’s calculation of the
probability of site being generated from the background
model, they took m preceding bases of the site into

account

P(bi’bi+l T

L-1
]TP< b[+j ‘bﬂj—mbuj—mﬂ bi+j—l )

j=m

Via the test on several synthetic datasets, they showed

,bi+L71) = P<bibi+1“.bi+m—l> X

good abilities of their polished program to deal with
noisy data and to detect the less conserved motifs. But
they didn’t explain why this higher order background
model could do better, and how the appropriate order

could be auto-determined.
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Furthermore, many papers have studied the over-
and under-represented words in DNA sequences using
various statistics based on the Markov model for DNA
sequences[g’m .

We will attempt to use y” statistic to determine the
proper order of Markov chain for modeling background
sequences. Applications of Xzstatistic to test context
dependence may be reviewed in Ref. [11].

Intergenic sequences or a set of selected upstream
sequences from yeast S. cerevisiae were often used to

serve as reliable background models in many motif
3,4,7,12]

discovery algorithms . The context dependence
implicit in those sequences is important and will be
investigated in this paper. In order to validate the
feasibility of using ¥’ statistic to test higher order
dependence, synthetic random sequences defined with
4-letter DNA alphabet = = {A,G,C,T| are
constructed according to m-order Markov chain models
(MC,,). Then by virtue of Xz test it will be discussed
what is the appropriate order for modeling real
non-coding sequences of S. cerevisiae with Markov

chain.

1 x° Test for Choosing Order of Markov
Chain

Xz statistic determines that the difference between
observed O and expected E scores should be attributed
to some actual difference in nature or to chance; it can
be computed by

(0, - E)

XZZZ E

1=0 i

~ Xz(Fdnf>

where F,; is the degree of freedom, and it is the total
number of free parameters.

For consistency, we denote the independent
background model as a 0-order Markov chain. Consider
an m-order Markov model for DNA sequences, the
probability of nucleotide b is determined by its m
preceding nucleotides.

In this paper, the idea behind y* test is to
compare observed frequencies of oligo-nucleotide with
those that would be expected if null hypothesis H, of
m-order Markov chain were true. If Xz > X%—a , H,
can be rejected at a given confidence level « = 0.05,
which is the most typical value. X%—a is the critical
value that cuts off the upper 5% of the distribution
with a particular degree of freedom. If H is rejected,
it can be concluded that the difference between
observed frequencies and expected frequencies is more
than what might occur by chance, and it’s not suitable

for modeling the sequences with m-order Markov

chain. In such a situation, a higher order model should
be tried. As a rule of thumb, the use of XZ test should
be avoided if any expected frequency is less than 5.
We also apply p-value to evaluate the statistical
significance of the result. A low p-value for the
statistical test points to rejection of the null hypothesis
because it indicates how unlikely it is that a test
statistic which is as extreme as or more extreme than
the one given by this data, will be observed from this
population if the null hypothesis is true. When a is set
to 0.05, any test resulting in a p-value under 0.05
(corresponding to y° > xi_,) would be significant;
therefore, the null hypothesis should be rejected to be
in favor of the alternative hypothesis.

First of all, we can consider the DNA as a random
sequence  {b;|  with state space . Let

N(b()bl..'blnbln+l> be the
oligo-nucleotides by b,***b,,b

occurrence count of

in sequences, and

m+1

(bgb,--b,b,.,) be its frequency. Obviously,
q y y

N(bob, " b,b,..)

f(bobl"'bmbm+1) — rf_lm_l 17

A Markov model is specified in whole by its
parameters: transition probability matrix and initial

distribution. In this paper, the initial distribution is
set to Wé’— equally, and its transition probability

n(b,**+b,,b,,, ), which is the occurrence frequency
of b

occurred, is estimated by the maximum likelihood as

given that its m preceding letters b,--*b,

m+1

N(b,~-b b [11]

W . It is worth noticing that
l m

NCby»+b, =) = ZN<b|"'b,,,b) is the boundary

=
count, it equals N(b,*-*b,) except for the last m
letters of the sequence, for which the count differs by 1
at most. So when n is large, w(b,***b, ,b,, ) can be
f( by b,b, )
SCbyb,)
Suppose the null

approximated by
“DNA

sequences can be modeled with m-order Markov chain
(m > 0)”, and the alternative H, is to be “DNA

couldn’t be modeled with m-order Markov chain”.

hypothesis  H, 1is

Under H,, the frequency of byb,*b,b,., can be
described as
FCboby+bb,t) = flboby-b,)w(byby+ by, b)) =
SCboby++b, ) x w(byby b, b, ) (b b, ,b,. )~
. (boby b1 b,) f(by*bby)
f(bobf"bmfl)Xff(obolbl...bml_l) ff(lbl...bm)l =
f(bobl"'bm) xf(bl"'bmbmn)

SfCby==+b,,)

(1)
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A
so expected number equals n x f (by**b,.,,).
With H,, N(byb, b,>*+b,b,,, ) is the observed
number in sequences. Therefore,

(N(b()"'bmn) - n f(bo"'bmn))z
n f(bo"'bml)

(2)
In order to test m-order context dependence, the
(m + 2)-letter should be taken into consideration. Its
frequency is determined by anterior (m + 1)-letter’s
frequency and its transition frequency to (m + 2 )-th
letter. So the degree of freedom is
Fop = (4™ — 1) x(4-1) =3x (@™ -1)
(3)
F,: and X?—a with @ = 0.05 corresponding to

different orders m are listed in Tab.1.

Tab.1 F, and X%—a with regard to order m

m Faof a xi-e
0 9 0.05 16.92
1 45 0.05 61.66
2 189 0.05 222.08
3 765 0.05 830.46
4 3069 0.05 3199.00
5 49 149 0.05 12 544..00

To compensate for zero occurrences of certain
oligo-nucleotides, a pseudo-count should be added to
its occurrence count. Just as Thijs, et al.'gj, we
choose the pseudo-counts proportional to single
nucleotide frequency and in inverse proportion to the
square root of the size of the dataset.

We will test Markov model beginning with lower
order. So before testing m-order Markov chain, we will
firstly test whether we can assume the sequence consists
of independent letters (0-order) just as many algorithms

have done. To be a little different from m-order Markov

chain, the expected frequency of dinucleotide is
. N(by +) N(-b,)
FChoby) = f(bo)f(by) = = 747 x ——~.

2 Data Sets

Context dependence in non-coding sequences of
yeast S. cerevisiae will be investigated. S. cerevisiae is
the simplest eukaryote organism; its whole genome has
been sequenced and all of its open reading frames

(ORFs) have been determined ™’ . First of all, we will
apply X2 test on synthetic data.

2.1 Synthetic data

Sequences are randomly generated on X according

to model MC,, (m = 0,1,2,3). To simulate the real
size of sequences used in many motif discovery
algorithms, we generate 10 sequences each with length
800 for every model per trial. From the statistical point
of view, every trial is executed 1 000 times to check if
the behavior follows the theoretical
distribution. Although synthetic data do not fully

chi-square

resemble biological sequences, they can be used to
validate the feasibility of applying Xz test to find the

context dependence in sequences.
2.2 Real data from S. cerevisiae

Because the objective of this research is to discuss
which order should be selected when using higher-order
Markov chain to model the background distribution
applied in many motif detection algorithm, it’s
necessary to take real DNA sequences into
consideration. We have built a dataset with intergenic
sequences from S. cerevisiae. It consists of upstream
sequences of ten families of genes which were firstly
defined by van Helden .
length 800 of those genes, where most regulatory sites

or motifs would locate™ , have been retrieved. The

Upstream sequences with

intergenic sequence was retrieved if its length was
below 800 base pairs.
For more details about genes of the dataset,

[12]

readers can refer to the literature of van Helden = and

Saccharomyces Genome Database at Stanford ™’ .
3 Results and Discussion
3.1 Synthetic sequences

We have tested the null hypothesis of context
dependence with distinct order aiming to validate the
m-letter context dependence in sequences generated by

MC

Tab.2. Just as assumed, for sequences generated by

P-values and chi-square values are listed in

m *

Tab.2 p-value and mean of X2 of 1000 runs in every trial

MC,, Order Faof ? p R
MG, 0 9 8.92 0.445 0.03
0 9 72.91 . 12 1
MG, 4.09 x 10
1 45 35.91 0.831 0.007
0 9 74.24 2.23 x 10712 1
MC, 1 45 120.58 7.95 x 107° 1
2 189 144.87 0.993 0
0 9 72.04 6.05 x 10712 1
1 45 121.40 6.08 x 107° 1
MG,
2 189 304.08 2.17 x 1077 0.102
3 765  583.02 1 0

Note: Order is the context dependence for which chi square test with

sequences generated by MC,,; R = N(y%? > »3.,)/1000.
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MC,,, Tab.2 shows that ? > Xg‘% are tenable and all
p-values are smaller than 0.05 when testing for context
dependence less than m; but for m-order test its
p-value is much bigger than 0.05 (0.831, 0.993 and 1
respectively for MCy, MC, and MC, ). Since every trial
was run 1 000 times, we substituted Xz with its mean

value. For example, concerning sequences generated

with MC,, ? corresponding to order 0 and 1 test are
bigger than the critical value 16.92 and 61.66
respectively and their p-values (2.23 x 107", 7.95 x

10™°) are both much smaller than 0.05; ? of 2-order
test is smaller than critical value 222.08 and its
p-value (0.993) is much bigger than 0.05. Therefore
it can be concluded that those sequences have implicit
2-order context dependence, which is accordant with
their generator-MC, .

Fig.1, Fig.2, and Fig.3 depict the curves of
chi-square value frequency distribution in trials for
model MC, and the theoretical chi-square distribution
with identical degrees of freedom. These curves show

that the computed chi-square values (denoted with
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2-order context dependence and standard distribution

Curves of computed chi square values for testing

experiment) almost followed the standard distribution.

So our trials have their statistical significance.
3.2 Results on real sequences of S . cerevisiae

We have analyzed the upstream sequences of ten
families of genes defined first by van Helden™ . As
in Tab.3,
corresponding critical values at 5% significance level
(16.92 and 61.66) when testing the independence and

one letter dependence, and all p-values are smaller than

shown all y* are bigger than the

0.05 (columns 1 to 4). These results indicate that
hypothesis of independence and one previous letter’s
dependence should be rejected and there is a two or
higher order dependence in upstream sequences. The >
and p values for testing 2-order Markov chain of 5
families are respectively bigger than the critical value
222.08 and 0.05 (in bold type of the columns 5 to 6).
We have studied the datasets and found that those
families almost have larger size than those with
x’ < 222.08. Besides the

phenomenon might be explained with the following

above reasons, this
possible reasons: (D Different gene families may have
different context dependences; @ There are different
context relationships in the same family, it may not be
suitable for modeling the sequences with a fixed order.
Only one element in bold type occurs when testing for
3-order dependence (in columns 7 to 8), so it’s feasible
to model the background distribution of those data sets
using a 3-order Markov model. Since using higher-order
Markov chain to model the lower distribution will
overestimate context correlation and lower order model
cannot reflect the complexity in the sequence, it’s
recommended to apply an appropriate background model

while analyzing different datasets.
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Tab.3 Chi-square values for upstream sequences with a length of 800 of ten families of genes defined by van Helden'™'

o 0 1 2 3
x P ' P a P a P
GAL 77.91 0 64.93 0.027 4 163.36 0.9113 550.01 1
GCN  370.67 0 298.19 0 41.29 0 760.79 0.5362
HAP 82.34 0 110.13 0 175.00 0.7593 602.36 1
INO 59.89 0 136.24 0 232.48 0.0171 669.93 0.9942
MET 91.05 0 175.85 0 261.01 0.000 4 729.47 0.8174
NIT 48.60 0 129.39 0 208.85 0.1536 638.70 0.9997
PDR 74.01 0 190.51 0 183.66 0.5960 599.89 1
PHO 68.30 0 74.54 0.003 202.90 0.2320 644.31 0.999 4
TUP 541.55 0 464.17 0 319.59 0 848.90 0.0184
YAP 166.50 0 135.11 0 26.58 0.0320 630.90 0.999

4 Conclusion

Using the y” test we attempt to explain the better
performance of higher-order Markov chain in modeling
background sequences than that of single nucleotide
frequencies. It is the complicated context dependences
inherent in intergenic sequences that can be modeled
with a higher-order Markov chain. As shown in the
above results different qualities and sizes of intergenic
sequences would possess distinct dependence, y° test
can help to determine the appropriate order of the
Markov chain automatically. Results also suggest that
intergenic sequences may own different context
dependences and future work can concentrate on using
interpolated Markov chains to model background
sequences; it can catch various context dependences in
sequences at one time.

Although only S. cerevisiae is investigated in this
paper, this method can easily be extended to study other

organisms.
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T A RRIEHES =5 B Markov chain BB 21
WEX I K EAR

(FHKFEEMEEEET, dx 210096)
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