Journal of Southeast University (English Edition)

Vol.19 No.4 Dec. 2003

ISSN 1003—7985

Fast FP-Growth for association rule mining

Yang Ming"’

Yang Ping’

Ji Genlin® Sun Zhihui®

(' Department of Computer Science and Engineering, Auhui University of Technology and Science, Wuhu 241000, China)

(* Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China)

(* Department of Mathematics and Physics, Anhui University of Technology and Science, Wuhu 241000, China)

Abstract :

In this paper, we propose an efficient algorithm, called FFP-Growth (short for fast FP-Growth) , to mine frequent

itemsets. Similar to FP-Growth, FFP-Growth searches the FP-tree in the bottom-up order, but need not construct conditional

pattern bases and sub-FP-trees, thus, saving a substantial amount of time and space, and the FP-tree created by it is much

smaller than that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can be easily
extended for reducing the search space as TD-FP-Growth (M) and TD-FP-Growth (C). Experimental results show that the

algorithm of this paper is effective and efficient.
Key words:

Association rule mining has many important
applications in real life"' . Let I = | Iy Iy D3, "%y
i,,{ be a set of binary attributes, called items. An
association rule consists in an implication of the form A
=> B, where Ac I, Bcland A\ B =), i.e.
A is a set of some items in I, and B is a set of some
items in [that are not presented in A. The probability
that B occurs given that A has occurred is called the
support, and written as count (AB). The probability
that B occurs given that A has occurred is called the
confidence. The association rule mining problem is to
find all association rules above the user-specified
minimum support and minimum confidence. This is
done in two steps: (D Find all frequent itemsets; @
Generate association rules from frequent itemsets where
@ is the key step .

TD-FP-Growth™® explores the FP-tree in the
top-down order for mining frequent itemsets, and
unlike Ref.[3], it need not construct conditional
pattern bases and sub-trees, hence it improves
efficiency. At the same time, Wang, et al. “) extended
TD-FP-Growth to mine association rules by applying
two new pruning strategies: pushing multiple minimum
supports — TD-FP-Growth(M) and pushing the mini-
mum confidence — TD-FP-Growth(C). Pushing the
confidence constraint into the first step can further
reduce search space. But the FP-tree created by

TD-FP-Growth is lexicographically ordered, so it is

Received 2003-03-31.

Foundation items: The National Natural Science Foundation of China
(79970092) and the Natural Science Foundation of Anhui Province of
China (03042205) .

Biography: Yang Ming (1964—), male, graduate, professor,
yangming @ seu. edu. cn.

data mining; frequent itemsets; association rules; frequent pattern tree (FP-tree)

much larger than that created by FP-Growth. In the
worst case, any two different transactions are in
different paths of the FP-tree created by
TD-FP-Growth, hence the size of the FP-tree is almost
the same as the size of the database.

To overcome the shortcomings of TD-FP-Growth,
in this paper, we propose a fast FP-Growth algorithm,
called FFP-Growth, for mining frequent itemsets and
association rules. FFP-Growth improves the structure of
FP-tree (see definition 1). FFP-Growth also explores
the FP-tree from the bottom-up, but unlike Ref. [3] it
need not construct conditional patterns and sub-trees,
thus, saving a substantial amount of time and space.
The FP-tree created by FFP-Growth is also much
smaller than that created by TD-FP-Growth. At the
same time, FFP-Growth can also efficiently reduce the
search space by applying pruning strategies as in Ref.
[9]: pushing multiple minimum supports and pushing
the minimum confidence. Experimental results show
that the algorithm presented in this paper is highly

effective and efficient.

1 Related Work

[1]

Since its introduction"’, the problem of mining

association rules has been the subject of many

[2-8]

studies But conventional Aprior-like algorithms

need to repeatedly scan the database and generate lots

of candidate itemsets>"*’

To avoid generating many
candidate itemsets, a frequent pattern tree (called the
FP-tree) was proposed” . The FP-tree is searched
recursively in a bottom-up order to grow longer itemsets
from shorter ones. The algorithm of mining frequent

itemsets” needs to build conditional pattern bases and

Fast FP-growth for association rule mining 321

sub-FP-trees for each shorter itemset in order to search
thus, it

time-and-space consuming as the recursion goes deep

for longer itemsets, becomes very

and the number of itemsets grows large.
TD-FP-Growth® explores the FP-tree in top-down

and unlike Ref.[3] it

conditional pattern bases and sub-FP-trees, hence it

order, need not construct
improves efficiency. But it makes the FP-tree become
much larger. Unlike Ref.[9], the algorithm of this paper
explores the FP-tree from the bottom-up and overcomes
the drawbacks of Ref.[9] and uses less space.

Unlike Refs.[7,8], our specification of minimum
support is also associated with the consequent of a rule

as in Ref.[9], not with an arbitrary item or itemsets.

Header table H

2 FFP-Growth for
Mining

Frequent Itemsets

To illustrate the idea of TD-FP-Growth, we utilize
the following examplem .

Example A transaction database is given as
Fig. 1. Suppose that the minimum support is 2, that is,
minsup = 2. After two scans of transaction database,
the FP-tree (TD-FP-Growth) and the header table H
are built as Fig.1. In which, an I _ node refers to a
node labeled by item 7. For each item I, all I _nodes
are linked by a side-link. Associated with each node v
is a count, denoted by count(v), representing the

number of transactions that pass through the node.

Trans ID Items Ttem | Count | Side-link
1 b, Z @ 5
2 a,b,c,e
3 b,c,e b 3
4 a,c,d c 3
e 3

Fig.1 Transaction table, FP-tree (TD-FP-Growth) and H

FP-tree

ordered.

The items in each path of
(TD-FP-Growth) are
According to TD-FP-Growth, frequent itemsets are

lexicographically

found: {a} for entry a, and {a, b} for entry b, and
fel,1b, c¢f and {a, cf forentry ¢, and {e}, {b,
el, {c, el and {b, ¢, el for entry e, the details can
be seen in Ref.[9].

Clearly, the drawbacks of TD-FP-Growth are as
follows: the FP-tree (TD-FP-Growth) becomes larger,
in the FP-tree
(TD-FP-Growth) is almost the same as that of the
database. For any entry I, it needs to search all paths

worst case, the size of the

that come from the root. Therefore, the structure of the
FP-tree is improved as definition 1, and a fast
FP-Growth algorithm is proposed, called FFP-Growth.
The FP-tree created by FFP-Growth is denoted as
FP-tree (FP-Growth) .

Definition 1 FP-tree (FFP-Growth) is a tree
structure defined below.

1) Tt consists of one root labeled as “null”, a set
of item prefix subtrees as the children of the root, and
a frequent-item header table.

2) Each node in the item prefix subtree consists of
four fields: item-name, count, parent, and node-link,
which item this node

where item-name registers

represents, count registers the number of transactions
represented by the portion of the path reaching this
node, parent points to its parent node, and node-link
links to the next node in the FP-tree (FFP-Growth)
carrying the same item-name, or null if there is none.

3) Each entry in the frequent-item header table
consists of three fields: (D ltem-name; @ Side-link,
which points to the first FP-tree
(FFP-Growth) carrying the item-name; and @ Count,

which registers the frequency of the item represented by

node in the

the item-name in the transaction database.

Definition 2 For a node /, a path in the FP-tree
(FFP-tree)
I-prefixed path. Similarly, the path that comes from

starting from the root is called an
any itemsets a is called a-prefixed path.

As in Ref.[3], to the given example, Fig.2 is the
created FP-tree (FFP-Growth) . Clearly, the size of the
FP-tree (FFP-Growth) is much smaller than that of the
FP-tree (TD-FP-Growth) .

Similar to FP-Growth, we can get all frequent
itemsets, but need not construct conditional pattern
bases and sub-FP-trees. For example, according to the
side-link, node-link and parent pointer, we can get
three paths for the last item e, {bl — {el, 1b} —
{et—1el and {al—1{bl—>1{cl—>{el, and quickly

322 Yang Ming, Yang Ping, Ji Genlin, and Sun Zhihui

Header table H
Item | Count | Side-link
b 3 _
c 3 —
e 3 -
a 2 \

Fig.2 FP-tree (FFP-Growth) and H

get frequent itemsets {ef, 1b, el, {c, ef, 1b, c,
ef. Clearly, the algorithm of this paper only searches
a few paths for mining frequent itemsets for the given
last item. FFP-Growth is described as follows.
Algorithm FFP-Growth (fast FP-Growth)
Input: A transaction database DB and minimum
support threshold minsup.
Output: The complete set of frequent itemsets F'.
Methods: According to the following steps.
1) Create FP-tree (FFP-Growth);// as in Ref.[3];
2) F = s
3) For each item b in the head table of FP-tree
(FFP-Growth) do
tF = FU bt
Gen_FI (FP-tree (FFP-Growth), {b}, F);|
/7 The generated frequent itemsets are the same
// as those by FP-tree| { b} as in Ref.[3];

4) Return F.

Procedure Gen_FI (tree, a, F)

{Find all a-prefixed paths by side-link, node-link and parent pointer
in the FP-tree (FFP-Growth);
Generate all frequent items iy, i, ***, i, in all a-prefixed paths,

denoted as F|;

forj=1tosdoif fa U it €Fthen F = FU {a U {i;fl;
k = 2; CF, = gen_ candidate(F;);// candidate itemsets CF,

ifla U iy, ir, =, is|| &F then
while CF, = ¢ do // frequent itemsets F,
i Fo= s
for each A in CF;, do
{ X =A4U a;
if {X| &F then

{get _ count (FP-tree (FFP-Growth), X);

if count(X) = minsup then { F = F U {X|; F, =

Fp U {Afst

felse Fp = F, U {Af;

f
k =k + 1; CF, = gen _ candidate(Fj,_;); ||
Procedure get _ count(tree, X)

//suppose X = {xy, x5, ***, x,,\l and count({x,}) =
//count({x,1) = =+ = count(| % {). Clearly, X is contained in
//every x,-prefixed path, so the support of itemset X can be
//quickly gotten by the parent pointer.

{ find the location of item ¥, in head table;

along side-link and node-link, get all corresponding nodes nd; ,

=ond, s
along parent pointer of nd;, -+, and nd, , get all corresponding
paths Py, -+, P,

for (i =15 i< p;i++)
if P; contains X then count(X) = count(X) + nd;.count; |
Clearly, by FFP-Growth, we need not construct
conditional pattern bases and sub-FP-trees, and the
FP-tree created by it is much smaller than that created
by TD-FP-Growth. Moreover, to reduce the search
space, FFP-Growth can be easily extended as TD-FP-
Growth (M) and TD-FP-Growth (C): pushing multiple
and pushing the minimum

minimum supports

confidence.
3 Performance Analysis

To evaluate the performance of FFP-Growth on
mining frequent itemsets, we compare it with FP-Growth
and TD-FP-Growth. All experiments are performed on a
PIIT 400 MHz Dell with 128 M main memory, running on
Microsoft Windows 2000 Professional. All programs are
written in VC ++ 6.0. Similar to TD-FP-Growth, we
choose two datasets, Connect-4 and Forest, from UC_
Irvine Machine Leamning Database Repository: htip:
//www.ics.uci.edu/ ~ MLRepository.html (see Tab.1).
The results are reported in Fig.3.

a) -

50+
» 40
3
£ 30f
S
2

101

0 1 1 1 1
1.0 1.5 2.0 3.0 4.0 5.0
Minsup/ %
(a)

80
Q 60 —— FP-Growth
g —&— TD-FP-Growth
£ 40 —a— FFP-Growth
=
= 20

O 1 1
78 83 88 93 98 105
Minsup/ %
(b)

Fig.3 Executive time and scalability of algorithms.
(a) Forest; (b) Connect-4

Tab.1 Data sets table

Dataset Trans Items per trans Distinct items
Connect-4 67557 43 126
Forest 581012 13 15916

Fig.3 shows a set curves on the scalability with
respect to different minimum supports (minsup).

These experiments show that FFP-Growth is the most

Fast FP-growth for association rule mining 323

efficient algorithm.
4 Conclusion

In this paper, we propose an efficient algorithm,
called FFP-Growth. FFP-Growth need not generate
conditional pattern bases and sub-FP-trees, the FP-tree
created by it is much smaller than that created by
TD-FP-Growth, and it only searches some paths in the
FP-tree (FFP-Growth) for any given last item, hence it
improves efficiency. At the same time, like TD-FP-
Growth(M) and TD-FP-Growth(C), FFP-Growth can
be easily extended to reduce the search space.
Experimental results show that the algorithm of this
paper is effective and efficient and outperforms the
previous TD-FP-Growth algorithm.

References

[1] Agrawal R, Imielinski T, Swami A. Mining association rules
between sets of items in large database [A]. In: Proc of the
ACM SIGMOD Int Conf on Management of Data[C]. Wash-
ington DC, 1993. 207 - 216.

[2] Agrawal R, Srikant R. Fast algorithms for mining association

rules [A]. In: Proc of the 20th Int Conf Very Large Data
Bases [C]. Santiago, Chile,1994. 487 —499.

[3] Han J W, PeiJ, Yin Y. Mining frequent patterns without can-
didate generation [A]. In: Proc of the 2000 ACM SIGMOD
Intl Conf on management of data [C]. Dallas, 2000.1- 12.

[4] Han J W, Pei J, Yin Y. Mining partial periodicity using fre-
quent pattern trees [R]. Canada: Simon Fraser University,
Computing Science Technical Report: TR-99-10, 1999.

[5] Srikant R, Agrawal R. Mining generalized association rules
[A]. In: Proc of the 21st Int Conf on Very Large DataBases
[C]. Zurich, Switzerland, 1995. 407 - 419.

[6] Srikant R, Yu Q, Agrawal R. Mining association rules with
item constraints [A]. In: Proc of the KDD[C]. Newport
Beach, CA, 1997. 67 -73.

[7] LiuB, Hsu W, Ma Y. Mining association rules with multiple
minimum supports [A]. In: Proc of ACM SIGKDD [C]. San
Diego, CA, 1999.337 - 341.

[8] Wang K, He Y, Han J W. Mining frequent itemsets using
support constraints [A]. In: Proc Int Conf on Very Large Data
Bases [C]. Cairo, 2000. 43 - 52.

(9] Wang K, Tang L, Han J W, et al. Top down FP-Growth for
association rule mining [A]. In: Proc of the 6th Pacific Area
Conf on Knowledge Discovery and Data Mining [C]. Taipei,
2002.

B T3 E AR R B R X BEX ML 2 B %

WoEe

TR I EE

(" ISR IS TR %, %4 241000)
CHRAXFHANMAEE TEZ, & F 210096)
C oA r RHIE L, X4 241000)

M OE R T ARBREm R R Ak

FFP-Growth, 3% ik R A B J& @ L6 Fek3d &

IREARE XM, 12 R E T FP-Growth 92 T T A s A X A Ao R X 4, LA R R EHE X
AL TD-FP-Growth 2 #6930 Z AL XA, B M0 A6 3% 3 R IR AL 69 42 3k 2 & . K AL T TD-FP-Growth
894 & TD-FP-Growth(M) #= TD-FP-Growth(C) , FFP-Growth 1R 2 5 A8 47 & , VA b R A bl /N 38 & 2

M. EE R AR IR R AR TAT .

KR HIEIEE; MERA LK RBEAN 5 SRER XK

FESES TP3I1I

