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Abstract :

An integer distance graph is a graph G(Z, D) with the integer set Z as vertex set, in which an edge joining two

vertices u and v if and only if ‘ uw-—-v ‘ € D, where D is a set of natural numbers. Using a related theorem in combinatorics

and some conclusions known to us in the coloring of the distance graph, the chromatic number X( G) is determined in this

paper that is of the distance graph G(Z, D) for some finite distance sets D containing 12,3} with ‘ D ‘ = 4 and containing

12,3,5} with | D| = 5 by the method in which the combination of a few periodic colorings.
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We consider the chromatic number of distance
eraphs on the integers. Let G(Z, D) denote the graph
with the set Z of integers as vertex set and with an edge
joining two vertices u and v if and only if | u - v| €
D. Such a graph G(Z, D) is called an integer distance
graph or simply a distance graph (with a distance set
D).

A proper coloring f: V(G) = {¢, ¢y, vyc,f of
G is an assignment of colors to the vertices of G such
that f(u) s f(v) for all adjacent vertices u and v.
The chromatic number X( G) of G is the minimum
number of colors necessary to color G, i.e. there
exists a proper coloring f of G. The chromatic number
¥ (G(Z,D)) of the distance graph G(Z, D) is usually
denoted by y (D).

Distance graphs, first studied by Eggleton,
etal."’, were motivated by the well-known
plane-coloring problem: What is the minimum number
of colors needed to color all points of a Euclidean plane
so that points at unit distance are colored with different
colors? This problem is equivalent to determining the
chromatic number of this distance graph G(R*, {1}).
It is well known that the chromatic number of this
distance graph is between 4 and 7. However the exact
number of colors needed remains unknown.

By now, the chromatic number y(D) of the
graph  G(Z,D) has been
determined when | D ‘ < 32 1t is obvious that X(D)

distance completely

= 2 when D contains one element. For a 2-element set
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we have X(D) = 2 if D contains two positive odd
integers and y (D) = 3 if D consists of two coprime
integers of distinct parity. If | D| = 3 and the greatest
common divisor of D, i.e.gcd(D) = 1, then X<D)
= 4 if and only if D = {1,2,3n) or D = {x,y,x +
yi and x % y(mod 3), and X(D) < 3 for all other
3-element distance sets. But there are not many results
about it when | D‘ = 4. For example, X(1,2,3,4n)
=5, when D = {x,y,x + ¥,y - xl,x < y,gcd(x,
y) =1, (x,y) = (1,2), X(D> = 4 if x,y are of
distinet parity and y (D) = 5 if x, y are odd numbers.
Also X<D) is determined for D = {2,3,s,s + u} for
many pairs (s, w)

Moreover, some results are obtained for other
distance sets. In Ref.[1], it is proved that X<P> =4
where P denotes the sets of all primes.Some X(D> ’s
are determined when D — P (see Refs.[4,5]). About
the distance sets missing multiples, if D = (1,2,
nt\{m,2m,-,sm!, then X(D) =mifn < (s+

n+sm+1—|

n+ sm+1
7—|+
s+ 1

1)m and [ sx(D)s( a1

1if n = (s + 1)m. The cases when X(D) coincides
with the lower bound and when with the upper bound
are determined in Ref.[6] (see Refs.[7,8]).

In this paper we determine the chromatic number
X(D) of the distance graph G(Z,D) for special
4-element distance sets D containing {2,3} as a subset

and the 5-element ones containing {2,3,5}.
1 Preliminaries

A coloring f:Z — {cl ,Cystycp ) is called
periodic with period P if f(v) = f(v + p) forall v €

Z . In the following, colors are denoted by a,b,c¢, .

A p-periodic coloring is denoted by P,, for example,
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Ps = abbce. A block of i colors of the same type is
sometimes indicated by the exponent i, i.e. Ps =
ab’c* .

For any subset M C N, we say that a coloring f:
Z — C is M-consistent if f(i + m) ;ﬁf(i) for every i
€ Zand every m € M. If M = {m/|,we shall simply
say that f is m- consistent. Thus f is a proper coloring
of the distance graph G(Z, D) if and only if f is a
D- consistent coloring of G(Z, D).

The following are several known results we shall
use in the next two sections.

Lemma 1° If M = {ml,mz,"',m[} , P, is a
periodic M- consistent coloring of the graph G with
period p > m;,j = 1,2:*-,i, then P, is also (np *
m]-)—consistent for all n € N where j = 1,2,---,1.

Lemma 2" If D is finite,D = {d,,d,, ",
d.}, then X(D) < min,eyn( |D"| +1) where D" =
{d, € D:nld.,i = 1,2,-+-,r}.

Lemma 3" 1If n € N, then y(d,,d,,",d,)
= x(nd,,ndy,">*,nd,).
Lemmad'"' IfD = {x,y,x + y|,ged(x,y)

=1,x % y(mod 3), then X(D) = 4.
Lemma 5"
3 if s = 2(mod 6)
123,555 +2) = {4 otherwise
Lemma 6 '
3 iff s = 3(mod9)
x(2,3,s,5s +3) = {4 iff s 23(mod9) and s =« 5
5 iff s =5
Lemma 7 (Theorem of Frobenius' "’ ) Let a and
b be two positive integers such that gcd( a,b) =1, if
¢ is an integer such that ¢ > ab — a - b, then the
equation ¢ = ma + nb has at least one solution with n

and m non-negative integers.

2 The Case When the Distance Set D Is
4-Element Set Containing {2,3}

In Ref.[13], the following theorem was given
with the distance set D = {2,3,s,s + u}.

Theorem1 If D = {2,3,x,x + s},x > 3,
then (D) = 3 if one of the following cases occurs:
Os=1landx >21; Qs =4orSand x > 17; @
s =6and x > 16;@D s =7 and x > 40; & s = 8 and
x>92; ©® s =9and x > 19.

In the proof, a proper 3-coloring was given in each
case by using the three periodic 3-colorings Ps =
aabcc ,P; = aabbcc,Py = aabccabbe and their
combination.

Determined by computer, the authors listed the

table to obtain X(2,3,x,x +s) =4and s = 1,4,5,
=+, 9 for all these graphs. See Tab.1.
Tab.1 All (x,s)’s such that ¥(2,3,x,x + s) = 4

S X

1 4,5,10
4 5,6

5 5

6 6

7 4,5,6,10,11,12,16,17,22
8 4,5,6,9,10,11,13,15,18,19,23,24,29,33,37,42,47
9 4,5,10

Studying this table, we can see that ¥(2,3,5,5 +
s) =4,5 =1,4,5,--,9. Moreover generally, we have
the following theorem.

Theorem 2 y(2,3,5,n) = {5 ifn =38

4 otherwise

Proof According to Tab.1, we have X<2’3’5’
n) =4,n =6,9,10,:-,14.

Lemma 5 implies that X(2’3’5’7> =4 and X(Z,
3,5,8) = 5 by lemma 6. It is obvious that y(2,3,5)
= 4 due to lemma 4. Since the distance graph G(Z,
{2,3,51) is a subgraph of G(Z, 12,3,5,n}), we get
X(2,3,5,n) = X(2,3,5) =4,n = 15.

Let n =5+ s, P, = aabbced, Py = aabbbeedd
are all {2,3,5}-consistent, which is easily checked.
Moreover P, Py and Py P, are also {2,3,5 | - consistent.
Since ged(7,8) = 1 the equation ¢ = 7/ + 8m has at
least one solution in non-negative integers [ and m
whenever t =3 +s >7x8-7-8,1i.e. s >38by
lemma 7.

For such a pair (I,m) we define a periodic
4-coloring of this form: P, = P, = P,'Py",s > 38,
P, is also {2,3,5]-consistent
consistence of P,;, Py, P;Pg and PgP;.S0 P, = P,

= P,'Py" is a {2,3,5,n|-consistent coloring by

because of the

application of lemma 1 where n > 43, i.e. ¥(2,3,5,
n) <4,n > 43.

For the case when D = {2,3,5,n,15 < n <43,
it is obtained that y(2,3,5,n) <4 when s = 4k + 3,
k € N due to lemma 2 choosing n = 4. It suffices to
prove that X(2,3,5,5 +5)<4,15< s <38,s =4k
+ 3,k € N. We will construct periodic 4-colorings to
prove this case by the combination of P, and Pg. In the
following, choosing P, = P, = P; 'Py" as a periodic
coloring of the distance graph G(Z, D) when n = i is
denoted by n = i, P, = P; = P,'P," .

s+5=n=20,P =Py, = PP
s+5=n=24, P, =P, =P,

s+5=n=28, P, = Pyy = PP,
s+5=n=232,P =Py = PP
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s+5=n=236,P, =P, = PP,

s+5=n=40, P, = Py = P;"Py

The above colorings are all 12,3,5, n | - consistent
by lemma 1.

All the cases are discussed. Therefore, X(2’3’5’
n) = 5if n = 8 and 4 for the other cases.

In the above proof, the combination of two
cardinal periodic 4-colorings P, and Py plays a very
By this method,

important role. three corollaries

follow.
4 if n =9,10
Corollary 1 v(2,3,7,n) = { ]
orotlary X( n) 3 otherwise
4 if n = 11
Coroll 2 2,3,8,n) = { .
oroflary X( n) 3 otherwise

4 if n = 14,19
3 otherwise

Corollary 3 ¥(2,3,12,n) = {

The next theorem determines the chromatic
number X(D) when D = {2,3,9,nl,n >9, n € N
with the similar method, but a small difficulty when n

= 23.

Theorem 3
4 if n =11,12,17,23
1(2,3,9,n) = {3 otherwise

Proof Firstly we have X(2,3,9,11) = 4 by
lemma 5 and %(2,3,9,12) = 4 by lemma 6 or by
lemma 3 and lemma 1 (P; = aabbeed is 12,3,
5! - consistent) .

With accordance to that table which lists all the
pairs (s,x) with X(2,3,s,s +x) =4,s = 1,4,5,
=++,9, we have X(2,3,9,n) = 3 when n = 10,13, ---,
18 and X(2’3’9’17) = 4. Let Py = aabcc, Py =
aabbec, Py, = PsPg, it is routine to check Py, Py,
P,P, ,P, P; are all {2,3,9}-consistent. Further-
more, X(2,3,9,n) = X(Z,S) = 3 when n > 18. Now
it suffices to construct a proper 3-coloring of the
distance graph G(Z, {2,3,9,n1) for n > 18. Let n
= 9 + s, in view of lemma 7 and lemma 1 there exist
two non-negative integers [ and m such that the
periodic 3-coloring P, = P, = PLP" is {2,3,9,
n!-consistent for s > 43, i.e. n > 52.

While 10 < s <43, i.e.19 < n < 52, the proper
periodic 3-colorings are obtained by the combination of
two cardinal colorings Pg and P,; except that we choose
Py, = aabbccaabecaabbecabbecaabbe when n = 29.
The details are omitted.

The next conclusion we will prove is y(2,3,9,
23) = 4. Note that X<2’3’9’23) < 4 by lemma 2 with
n = 4 and X(2’3’9’23) = X(2’3) = 3. Now we will
prove that X(2’3’9’23) = 3 is impossible. Assume

that the mapping f:Z— C is a proper 3-coloring of the
distance graph G(Z,12,3,9,n}). Without the loss of
generality we choose a 5-cycle Cs which consists of the
five vertices 1,3,4,5,7. Suppose f(1) = a, f(3) =
b, then the coloring of Cs is divided into five cases:

O f(1) = a, f3) = b, f(4) = c, f(5) = a,
S(1) = b;

© f(1) = a, f(3)
S(7) = ¢

® A1) = a, f(3)

b, f(4) = b, f(5) = a,

=b, f(4) = ¢, f(5) = ¢,
(1) = a;
@ fQ1) = a, f(3) = b, f(4) = ¢, f(5) = c,

f(7) = b;
® f(1) = a, f(3)
f(7) = c.

We will next consider the first case. There is a

b, f(4) = b, f(5) = a,

similar discussion for the remaining case, but it is
different in some details.

For convenience, f(i) = j is denoted by i —j in
the following proof. By the {2,3} - consistence, we can
obtain2—> b6,6—>a,8—>borc. f 8—>c, then 9 —
¢, but 10 cannot be colored by the three colors a, b, ¢
since 10 is adjacent to 1,7 and 8, which contradicts
the proper 3-coloring f of G(Z, {2,3,9,n}).

f8—> 56, then9—>¢,10—>¢,11 > a,12—> a,
13— b,14— b or c.

Casel 14— c¢,15—>¢,16—>a,17—> a,18—
b,19—>b,20—>c¢,21—>¢,22—>a, then23—>b or a.

1)23—>6,24—> b,25—> ¢,26—> ¢,27— a, so
28 cannot be colored by a, b, ¢ because 28 is adjacent
t0 5,19,25 and 26.

2)23—>a,24—> b,25—> ¢,26 > ¢,27—> a, so
28 cannot be colored by a,b,c¢ because of the same
factin 1).

Case 2
or c.

1) 16—~a,17—>a,18—> 5,19 b,20— ¢,21—>
c,22—>a,23—>a,24—> b,25—> ¢,26—> a,27—> a,
the same contradiction occurs in 28.

2)16—>¢,17—> a, then 18 > b or a.

D 18> b,19—>b, 20> ¢,21 > ¢,22—> a,23
— a,2d—>b.

@ 18— a,19— b, it follows that:

a) 20— ¢,21 > ¢,22—> a,23—> a,24—>b.

b) 20— 5,21 —> ¢, then 22— a or c.

(i) 22— a,23—> a,24— b; (ii) 22— ¢,23—>
a,24—>b.

In the above cases the vertex 25 is not colorable by

14 — b,15 — ¢, then we have 16 > «

a,b,c.

The above are all possible cases in which
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contradictions occur. Therefore X(2,3,9,23) = 3. It
follows that X(2,3,9,23) = 4. So theorem 3 holds.

3 The Case When the Distance Set D Is a
5-Element Set Containing {2,3,5/

The following theorem was proved in Ref. [3] by
the combinatorial method similar to that used in the
above section.

Theorem 4 If an integer s = 10 and the other
one x = s> — 65 + 3, then X(2,3,x,x +s) = 3.

When the distance set D = {2,3,5,s,s + ul, we
have the following theorem about the chromatic number
x(D).

Theorem 5 For any u = 20 and the other one s
= u? —5s — 2, it holds that X(Z,S,s,s +u) = 4.

The proof of theorem 5, similar to that of theorem
4, is omitted, but in the process we introduce a new
proper Py =
aabceddabbeedaabbedd in addition to P; and Py .

Note that there are many chromatic numbers
X(D) not determined by theorem 5 when D = {2,3,

5,8, + ul, as a complement, we can obtain the

periodic 4-coloring

following two theorems.

Theorem 6 If D = {2,3,5,s,s + ul,s >5,u
= 6,7,8, it follows that

5 ifn =28

1(D) = {4

Proof When s = 7, a routine check shows that
P, = aabbced, Py = aabbeedd, P, Py, Py P; are all
{2,3,4,5! - consistent.  There
non-negative integers n and m such that P, = P,,; =
PiPy is 12,3,5,s,s + 7}-consistent (i = 2 or 5)
when s + i > 7x8-7-8,1i.e. s > 36 or 39 due to

otherwise

exists a pair of

lemma 7.

By the application of lemma 2 with n = 4, it is
easily obtained that y(2,3,5,s,s +7) <4 if s % 4k
ordk + 1 and 6 <= s < 36. The proper periodic
4-colorings for s = 4k or4k + 1 and 6 < s < 36 except
s = 8 can be constructed by the combination of P, and
Py whose D- consistence is obtained by lemma 1. The
process is omitted.

On the other hand, X(2,3,5, s,s+7) = X(2,3,
5) =4 by lemma 4. Therefore, X(2’3’5’ s,s+7) =
4,s £ 8.

If s = 8, it follows that X(2,3,5,8,15) > X(Z,
3,5,8) = 5 in view of lemma 6. In the next step, we
choose P,; = aabcdeeabbede which is checked to be
12,3,5,8,15} - consistent. This implies that X<2’3’5’
8,15) < 5, so ¥(2,3,5,8,15) = 5.

The proof for u = 6,8 is similar to that of s = 7,
except that P\, = abceddbaacedbbadce is chosen as a
{2,3,5,8,14! - consistent coloring for u = 6 and s =
8. It is omitted.

Theorem 7

5 ifn =7,8
1(2:3,5,5,5 +1) = {4 otherwise

In the proof of theorem 7, P, is also introduced.

Using this combinatorial method, the following
theorem of which form is similar to that of theorem 2 is
more apparent as a counterpart of theorem 6.

Theorem 8 If D = {2,3,5,s,nl,s < n,s =
10,11,12, it holds that (D) = 4.

4 Open Problems

If D = {1,2,3,+,r!l, then X(D> = r + 1(see
Ref.[4]). What is the minimum distance set D of
cardinality r such that X(D) =r+land1&D. Ifr
= 2,then D = {2,3}, ifr = 3, then D = {2,3,5},
and if r = 4, then D = {2,3,5,8}.

disappointment, the answer for r = 5 is unknown to

=

To our
us. Observing the results for r 2,3,4 one may
conjecture that the minimum distance set for r = 5 is D
= 12,3,5,8,n! where n is a given natural number.
However, this is not true.

x(2,3,5,8,n) = 5.

It can be proved by the combinatorial method in

Theorem 9

which P, is introduced in addition to Py, P,; used in
the fourth section.

So far no more information about the minimum
distance set D for r = 5 is known to the best of our
knowledge, even regarding its form.

In contrast with the chromatic numbers y(2,3,5,
n) for all n € N, it seems to be difficult to determine
the chromatic number X(D) for general set D = la,
b,a + b,nl,n > a + b where a,b are all given
natural numbers; at the very least the combinatoric
method doesn’t seem to work. In addition, the circular
chromatic number XC(D> and the fractional chromatic
number Xr(D) (their definitions can be seen in Ref.
[15]) are well worth researching, up to now there are

few significant results.
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