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Global existence and blow up of a degenerate parabolic system

Yang Ming

(Department of Mathematics, Southeast University, Nanjing 210096, China)

Abstract:  This paper deals with positive solutions of a degenerate parabolic system: u, = Au" +'In“(h + u), v, = Av" +
w'In’ (h + v) with homogeneous Dirichlet boundary conditions and positive initial conditions. This system describes the
processes of diffusion of heat and burning in two-component continuous media with nonlinear conductivity and volume energy
release. We obtain the global existence and blow up results of the solution relying on comparison with carefully constructed
upper solutions and lower solutions.
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1 Introduction and Main Results

In this paper, we consider the following degenerate parabolic system:

u, = Au" + In"(h + u) (x,t) € O x(0,7T)
v, = AV + u'ln’(h + ) (x,1) € 2 x(0,7) (1)
u(x,t) = v(x,t) =0 (x,t) €902 x (0,7T)

w(x,0) = ug(x), v(x,0) = vy(x) x € 0

where 2 is a bounded domain in R", the parameters satisfy minfm,n} =1, h =1, a =0, B=0,p>0,q

=

> 0. The initial values u,(x) and v,(x) are nonnegative continuous functions.

This system describes the processes of diffusion of heat and burning in two-component continuous media with
nonlinear conductivity and volume energy release. The functions u and v can thus be treated as temperatures of
interacting components of a combustible mixture. And the nonlinear terms can be treated as the reaction sources,
these require h = 1.

The local existence, uniqueness and comparison principle of the solution may be obtained by the method which
is used in Ref.[1]. The aim of this paper is to get some conditions under which the solution of (1) blows up in
finite time (or exists globally). In the next section, we deal with the blow-up phenomenon and prove our results.

Let T" be the maximal time of existence of the corresponding solution (u,v). T < o, then lim ” u(t) H w +

7"
lv(¢)|l. = o and the solution is said to blow up in finite time. On the other hand, if T* = o, then the solution
is said to be global.
In the past years, blow up problems for nonlinear parabolic systems have been widely studied®”" .

In the next section, we prove the global existence and blow up results by the upper and lower solutions
method. So we give the definition of the upper solutions and lower solutions.

Definition 1 Let Q;, = 2 x (0,7), ¢(u) = u", ¢(v) =", flu,v) = 'In(h + u), glu,v) =
wn(h +v). (u(x,t),v(x,t)) defined on @'r is called an upper solution(lower solution) of (1) if the following
all hold.

1) u,v € L7(Qs);

2) u(x,t) =0, v(x,t) =0, (x,t) €I x(0,T), u(x,0) = uy(x), v(x,0) = v,(x),x € Q3

3) Forall t € [0,T], £,6€ P = {&(x,1) € C(Q;) N C'(Qr), & =0, haeom = O,

Jnufdx = (s)J;JQ[ ué, + (u)AE +f(u,v)f] dxds +Jnu0(x)€(x,0)dx

JQ vidx = (g)J;JQ[vC‘ + o()AT + g(u,v) L] dxds +ngo(x)§(x,0)dx
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(u,v) is called a solution of (1) if it is both an upper solution and a lower solution of (1).

When A > 1, we have the following results.

Theorem 1 Let pg < mn, all the solutions of (1) are global.

Theorem 2 Let pg > mn, (D The solutions of (1) are global provided that the initial functions are small
enough; (@ There exists a solution of (1) which blows up in finite time.

Theorem 3 let pg = mn, @ If the diameter of 2 is sufficiently small, then all the solutions of (1) are
global; @ If the diameter of (2 is sufficiently large, then every nontrivial solution of (1) blows up in finite time.

When h = 1, we have the following results.

Theorem 4 (D If pg < mn, then all the solutions of (1) are global; @ If pg = mn and the initial functions
are small enough, then solution of (1) are global; @ If N = 1,2,pg = mn and the initial functions are large
enough, then there exists a solution of (1) which blows up in finite time.

2 Proof of Global Existence and Blow Up Results

Throughout this section, we assume that u,, v, € c'(Q) and uy = vy = 0ondQ.
Lemma 1 Let ¢ be a solution of the equation,
p(x) =0 x € 90
It’s obvious that ¢(x) > 0,V x € Q. If Q is “thin” at least in one direction, then fgggo( x) must be small
enough.
Proof Without the loss of generality we may assume that 2 is “thin” in x, direction. Then there exist [ > 0

n

(l<1) and ki >0,s.t. 0 cc [0,1] x H[O,kﬂ = R. For x, € [0,!] and y € H[O,kj}, we set g[)(xl,

j=2 j=2

y) = 2, (1 - xl)/Z, then — A¢ = 1 in Rand ¢ = 0 on JR. It’s obvious that ¢ > 0in R, 2 c c R, so ¢(x)
>0,V x € Q. By the comparison principle, we have ¢ = ¢,V x € Q. But |¢l,= = I*/8, therefore
I ?’”L“(m < [*/8. Now we can see that if £ is “thin” at least in one direction, then [ is small enough, then

sgg go( x) must be small enough.

Lemma 2 Let ¢ be a solution of (2). Assume that there exist @ > 0, b > 0and & > 0 s.t.

{a'" = 0" (8 + go)?pfln“(h + a(d + @)71"), b" = a’(68 + go)r% Wl h+b(5+ go)%] } (3)
ago’i" = uo(x), bSD% = (%) x € 0]
then the solutions of (1) are global.
Proof It’s sufficient to take
1 1
u=a(d+q@)m, o =0b(8+¢)
then we have
Au™ + 'In"(h +u) —u, =-a" + V(5 + go)lﬂl In“l A+ a(d + 90)’_1"] < 0} @)
. — q 2 4
A+ @'’ (h +v) —v, == b" + a' (5 + @)ﬁlnﬁ[h +b(5 + 90)%] <0

therefore (z,7) is an upper solution of (1), by the comparison principle it follows that the solutions of (1) are
global .
Proof of theorem 1 and theorem 41) If we can find two positive constants a, b such that (3) holds, then

we can obtain theorem 1 and theorem 4 by lemma 2. Set K = sgg[é\ + gD(x)} , if we have

a" = b”K%ln“(h + aK#), b" = a"K%In'@(h + bK%) (5)
then the first formula in (3) holds. Put b = arKalnh (h + aKn ), we obtain the inequality for a:

S KW]'_)"qln“"(h + aKim)ln”ﬁ[ h+ arlns (h + aKl'")]
Choose a sufficiently large s.t. In"7 (h + GK%) < 1, then we only have to check ™™ = Kt In“(h + aK%)
In”(h + ar ). Since pq < mn, this inequality holds if we choose a sufficiently large. Since u,, v, € Cc'(Q), we
have u, < ag071" y Uy < bgo% in Q if we choose a, b sufficiently large.

Proof of theorem 2(D, theorem 3(D and theorem 4(2) It’s obvious that there exist constants k,0,7 > 0
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s.t.

ln“(h+u)glnah+ku9,ln’g(h+v)sln'gh+kv’7 (6)
Let

u = a(3+g0)711, v o= b(5+§0)%
where & > 0, ¢ is a solution of (2). Let K = sgg[@ + go(x)]

In the case of h > 1, we would find two positive constants a, b s.t.

A" = b K (Inh + k" Kn), b" = a'Kn (Inh + kb7 K7 (7)
Put b = a%K'% (In“h + k agK% )'% , then we obtain the inequality for a:
A" = KR (In'h + ka’Kn )" (Inh + ka's [ln°h + ka'Kn )77 17 (8)

In the proof of theorem 2(D, note that pg > mn, we can choose a sufficiently small to satisfy (8). At the

1 1
same time, let the initial values u,, v, satisfy u, < apm,v, < bpn , then we obtain theorem 2(D by lemma 2. In

the proof of theorem 3D, because Q2 is “thin” at least in one direction, we see from lemma 1 that sgggo(x) is

sufficiently small. Let ¢ sufficiently small, namely K is sufficiently small. Combining this and pg = mn, we

conclude that (8) holds. As the same as the proof of theorem 1, choose a, b sufficiently large s.t. u, < agoi ) U

< bgz)% . From lemma 2, it follows theorem 3.

In the case of h = 1, we can find two positive constants a, b s.t.

m L) n n 1 1
a" = kb’ Knd’K"", b" = ka’Kn b'Kn (9)
2, 0 4,0 _ A om0, o .
Let kK»™m = C,, kK»"» = C,, b = C,"ra v , it s sufficient to verify
Clq—n > Cz apq—(n—)y)(m—e) (10)

Note that pg = mn, then we have pg > (n - 7)(m - 0). So we can choose a sufficiently small to satisfy

1 1
(10) . Finally we choose the initial functions small enough s.t. u, < apm,vy < ben . From lemma 2, we obtain

theorem 4.
Proof of theorem 22 and theorem 32 Let A = min{In“h,In°h} > 0, then we have

u, = Au" + 'In“(h + u) = Au™ + A
n 91,8 n q} (11)
v, = A" + u'In” (h +v) = AV" + Au
Now we consider the following problem:
u, = Au" + A, v, = Av" + Au! (x,t) € O x(0,7T)
u(x,t) = v(x,t) =0 (x,t)E&Qx(O,T)} (12)
w(x,0) = ug(x), v(x,0) = vo(w) x € N
Let u(x,t) = w(ﬁx,kt), v(x,t) = z(ﬁx,kt),we have
w, = Aw" + 2", z, = A" + w! (x,0) € Q" x(0,T)
w(x,t) = z(x,t) =0 (x,1) €9N" x (0,7) (13)

w(x,0) = uo(x/ﬁ), z2(x,0) = vo(x/ﬁ) x e N’
When pg > mn, from the conclusion in Ref. [4], it follows that there is no global solution of (13) if the
initial data is sufficiently large. Then the solutions of (1) blow up in finite time.
When pg = mn, if Q is sufficiently large, then Q2 is sufficiently large. From the conclusion in Ref.[5], it
follows that the solutions of (13) blow up in finite time. Then the solutions of (1) blow up in finite time.
Proof of theorem 43  We consider the following problem:
-Ap = ¢ x € 0 }
p(x) =0 x € d0
where 2 is a bounded domain in RY, N = 1,2, ¢ is an even. From the results in Ref.[8], (14) has a solution

gp(x) in W(l,‘Z(Q) for all positive even ¢. Since N = 1,2, ¢ is a classic solution by the regularity theory, then ¢

(14)

is bounded. Tt’s obvious that gp(x) >0,Vx € Q. Letw, (x) = ago'_l"(x),zl(x) = bgo%(x). In the following we
will find two positive constants a, b s.t.
Awl + 2In"(1 + w,) =0 xG.Q}

‘ - _ 15
AZl + w ' n’(1+2) =0 x €0 (15)
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namely

borIn® (1 + ago'l") > a"¢’ x € .Q}
a"goﬁlnﬁ(l + bgo%) = b'¢’ x €0

(16)

It’s obvious that if ¢(x) = 0 on dQ then (16) holds. Now we consider the case ¢ > 0. First consider the

inequality for S:
BSEIn (1 + aSn) = a"S, a' Swln’(1 + bST) = b'S°

0<S< S, (17)

When pg > mn, it’s easy to see that there exist positive constants a,, by s.t. by” = ay", ay’ = by". Let ¢ =

Z[max{p/n +alm,q/m + ,@/n} + 1](here [ +] represents the integer part of a real number) , then

S S
lim

m-————— 7 = hm—l =

S0 10 (1 + agS™) S0 1nf (1 4+ boS™)

on the other hand
. S, . 8,7
lim ——— — = lim— — =
S0 S8uIne (1 + agS=)  570Suln’(1 + byS)

+

therefore there exists S, = Sy(ay,b,) < S, such that when 0 < S <

L g

5 s
— .=, ——— <
In“ (1 + aoS) In(1 + byS™)

when S = S,, we have

S,7
1 a 1 21
Sonlnr (1 + aoSy)
S g
! 1

. 1=
SoIn” (1 + by Sy )
Next we will find two positive constants a, b satisfying:
] 1
bI’SO{Tlnn(l + agSym) = a"S]
/ 1
a’Syn o’ (1 + by Sy ) = b" S,°
a=ay, b= b

b’ a’
— =1

m = ’bT

=1

Set
m 1., a 1
b = arS, S, 7In"r (1 + aySym)

then we obtain the inequality for a:

mn - an a4

mn o an 1 1 s(1+2 _
a7 Ine (1 + agSem)In (1 + b,S,7) = S,°"* §, "

Sy, we have

(18)

(19)

(20)

1)

Since pg > mn, the above inequality holds if we choose a sufficiently large. Let @ = ay, from (18) and (21), we

have b = ar = aoll: = b,. From (19) and the second formula in (20) we obtain a’ = 6". So when 0 < S < S,

we have
b s S
w=l= o= i
In“(1 + agS™) In“(1 + aSn)
P 1
B’SnIn“(1 + a Sm) = a"S’
namely

B ST (1 + aS") = a5
as the same as the above, we also have

a'Silnf (1 + bS) = b'S°
When S) < S < S,, we have

B SEIn (1 4+ aSh) = 6'SymIn* (1 + aySym) = a”S,” = a"S°
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and also have

A Sl (1 + bS71) = b' S
When pg = mn, let “ =" hold in the first inequality in (20), then solve the equation with respect to b. Combining
this and the second inequality in (20), we can guarantee the second inequality in (20) holds by choosing a, o
large enough. Thus the desired a,b,o are found, that is, these positive numbers a, b, guarantee that (16) is
true for all go(x) .

Let (u,,v,) be a solution of (1) with the initial value (w, ,z,). From the upper and lower solutions method,
it follows that (u,,v,) increases in ¢. Let uo(x) = w,(x),vy(x) = 2z, (x), then u(x,t) = u,(x,t),v(x,t)
= v,(x,t). Because u; (x,t) = w,(x,t) >0,v,(x,t) = z,(x,t) >0,Yx € Q, t =0, there exist 2, C C
 and § > 0, such that

u(x,t) = u(w,t) = w (x,t) =0, vin,t) = v,(x,t) = z(x,t) =0 x € 0,5t =0
Denote A = min{In“(1 + &),In"(1 + &)}, and consider (1) in 0, . Similar to the proof of theorem 2, we
conclude that our statement is valid when pg > mn.

In the case that pg = mn, fix Q, c c {2, then there exists a constant d > 0 such that go(x) =d,Vx €

Q,. Choose a sufficiently large, then 8 and A are also sufficiently large. The transformation (x,1) —> Ax, A1),
x € 0,/ Ax € Q" yields that Q" is large enough. Hence as in the proof of theorem 3@, our conclusion is valid

when pg = mn.
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