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Anti-periodic solutions to a class
of second-order evolution equations
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Abstract:  In this paper we discuss the anti-periodic problem for a class of abstract nonlinear second-order evolution
equations associated with maximal monotone operators in Hilbert spaces and give some new assumptions on operators. We
establish the existence and uniqueness of anti-periodic solutions, which improve andgeneralize the results that have been
obtained. Finally we illustrate the abstract theory by discussing a simple example of an anti-periodic problem for nonlinear
partial differential equations.
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Let H be a real Hilbert space of the inner product (-, +)with the norm |+ |, we consider the nonlinear
second-order anti-periodic problems
{—u”(t)+au’(t>+A(t)u(t)Bf(t) ae. 0<t < T (1a)
u(T) =-u(0), ' (T) =-u(0) (1b)
for the H-valued u(t),where a € R, and for each t € [0,T],A(¢) is a nonlinear (possibly multivalued and
unbounded) maximal monotone operator.

Since anti-periodic problems have important applications in auto-control, partial differential equations and
engineering, they have been studied extensively since the 1990 s. First-order anti-periodic problems have been
studied more in Refs. [1 — 3]. Subsequently, Aftabizadeh, et al. made use of maximal monotone theory or
m-accretive theory to consider the anti-periodic solutions for second order equations in Hilbert space and general

[4]

Banach space™ . Aftabizadeh extended this problem to a higher order, but it requires that A be a linear self-adjoint

(possibly unbounded) monotone operator. Later Aizicovici® proved the existence and uniqueness of problem (1)
when A(t) = A € R and A is an odd, nonlinear, m-accretive multivalued operator. Aftabizadeh, et al.'®
considered the solutions to problem (1) under the condition that A(¢)x is continuous about ¢ and x. This paper
establishes the existence and uniqueness of solutions to problem (1) in the case that A(t)x loses the continuity and
the boundedness. Our technique employs some ideas from Refs. [1,7 — 9], where Cauchy problems regarding

operator families {A(t)} were considered.
1 Preliminaries

Definition 1 The nonlinear (possibly multivalued) operator A : D(A) ¢ H— H is said to be monotone if
<x1—x2’y1—Y2>20 Vxl’x2€D<A>;%eAxl;yzesz
and is said to be maximal monotone if, in addition, R(/ + AA) = H, forall A > 0O (or equivalently, for some A,
> 0).

Definition 2 If u:[0, 7] — H is continuously differentiable, u’(¢) is absolutely continuous, u”(¢) exists
fora.e. t €10, T],u(T) = u(0),u'(T) = u'(0), and we can find v(t) € A(¢t)u(s) a.e. t € [0,T],
such that — v/ (t) + au’(t) + v(t) = f(t) a.e. t € [0, T], then we may say that u is a strong solution to (1).

Let {A(¢):0 << T} is a family of maximal monotone operators in H,then for A > 0, we can define the
Yosida approximation of A(t):

L) = (T +24(0))™", A4 (0) = A7 (1 = J, (1))
The properties of J, (¢) and A, (¢) can be found in Ref. [10].

Received 2003-06-11.

Biographies: Zhang Lina (1977—) ,female, graduate; Xue Xingmei( corresponding author) , male, doctor, associate professor, xmxue@seu.edu.cn.



Anti-periodic solutions to a class ofsecond-order evolution equations 433

| —

.7
Let E = L*(0,T;H) and ‘u‘ = (J ||u(t)||2dt) ,Vu€ E, then(E,‘-|) is a Hilbert space.
0

Lemma 1" et u:10, T] — H is differentiable, then so is I u(t)||2and %” u(t)”2 = 2w (), ult)).

Lemma 2"

Suppose A and B are two maximal monotone operators in H, and {x,| is the solution to the
equation y € A,x, + Bx, + ex, where ¢ > 0, A, is the Yosida approximation of A. If {x, | and {A,x, | are bounded

as A — 0", then there is x. € D(A) () D(B),such that limx, = x, and «. satisfies y € Ax, + Bx. + ex,. If

A—=>0

limx, = x, then y € (A + B)x.

e>0"
Lemma 3'°  Assume that u € W"(0,T;H) satisfies u(0) = — u(T),then I u(t)” < T% ‘ u’| , Vi €
[0,T].

2 Main Result

We give the hypotheses on the t-dependence of A(t) now.
1) Forall t € [0,T],A(¢) is maximal monotone and satisfies A(0)(= x) = — A(T)x,¥x € D(A(t)) = D.
2) Forall 1 € [0,7],0 € A(1)(0).
3) D There exists a continuous function g: [0, T]— H, which is almost everywhere differential, g’ € L*(0,
T; H); a bounded mapping L: R* x R* = R"; and A, > 0,h > 0, such that
A (Dx = A()y,x—y) = - lglt) =gl Tx = yIL Ty D+ Ay e = 5]
forall x,y € H; 0 < A < 05 0< s,t < T; |t—3‘ < h
@ A, (t)u(t) is absolutely continuous on [0, T] if u € W>*(0,T;H) N C*(0,T;H).
3') There exists g:[O, T]— R, which is absolutely continuous and g’ € L?(0, T) ;a bounded mapping L:
R*—R"; and A, > 0 and A > O such that
|4 (D2 = A()x| < [g(e) = g() LD+ [A4)x]) ]t - s
forall x € H;0 < A < 4550 < s,t < T;lt - sl < h
Remark Hypothesis 3’) easily implies 3) when 1) is satisfied.
Now we give a simple example which satisfies all hypotheses.
Example 1 Let A be a maximal monotone operator in H, 0 & Ail(O),g: [0,T] — R is absolutely
continuous, g’ € L*(0,T), we set ACt)y = Ay + g(t)y, ¥y € D(A(t)) = D(A).By calculations we have

| LDy = L()yl< Al gt) —g(s) [ Iyl /(1 =alge)]) foralld >0;0<t,s<T; yEH

Choose A, < ﬁ,M = supHg(t)‘ 0< it < T}, then
[ A (Dy = Ayl <2l g(e) = g(s)l Iyl forall0 < A <A;0<t,s<T; yEH

Thus clearly, {A(1):0 < t < T} satisfies 1), 2), 3').

Theorem Suppose A(t) satisfies 1), 2), 3), then for every f € E, Eq.(1) has one and only one solution
u€ W2(0,T;H).

Proof of uniqueness Let u and v be two solutions to problem (1). Multiplying (1a), — (1a), by u(t) —

v(t), then integrating it over [0, T], one obtains

0= _J'Z<u”<t> ) u(t) - o())de + aJ'OT<u’<z> () u(t) - o())de +
[FCatutn - a0, w0 - o)

Via the monotonicity of A(t), lemma 1 and (1b), we get
.7
lw -] = J [w (¢) =o' (e)|*de <0
0

Using lemma 3, we deduce
lue) = o()l<0 Vi€ [0,7]
Hence u(t) = v(¢),Yt € [0,T].
Lemma 4'°'  Define B:D(B) c E—~>E, Bu = -« + au’,u € D(B), where
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D(B) = {u€ W*(0,T;H):u(0) =~ u(T),u' (T) = - u'(0)}

Then B is maximal monotone in E .

We define % = {{u,v] E Ex E:u(t) € D(A(1)),v(t) € A(t)u(t) a.e. t €[0,T]}, then .~ is the
realization of A in E and we have lemma 5.

Lemma 5 .7 is maximal monotone in E.

Proof Easily we can see that .Z is monotone. Forf & E, we can define é(t) = (I+ A(t))flf(t) , since
(I +A(¢)) " is nonexpansive and 0 & A7 (1)(0),Y ¢t € [0,T],then ||é(t) I < ||f(t) | a.e.t€[0,T], i.e.
g € E. Hence R(I + .%) = E.

We now return to the existence proof of the theorem.

Since B is maximal monotone in E, then B + .7, + el is surjective for every € > 0,A > 0.Then, for every ¢

> 0,1 > 0 and f € E,there is a unique u, , € D(B) satisfying

Bu, , + AZu., + eu.; = f. (2)
{—u”e,A(L‘)+au’m(t)+A1(t)u€,l(t)+eusy,\(t) = f.(t) ae. 0t < T (3a)
us./l(T) = - ue,/\ <0)’ u,s,/I(T) = - u/s,A (0) (3}))

where f. € W'?(0,T;H); f(T) == £(0) 5 f. > f(e >0")(in E).
From the hypotheses 3)@ we know that A (¢) is absolutely continuous on [0, T] and differential almost
everywhere. The hypothesis 1) implies that A, (T)u, ,(T) = - A, (0)u. ;(0), hence
W', (T) == u". ;(0) (4)
Multiplying (3a) by Ue s (t) and integrating over (0, T') ,we have

J(;r<ﬁ(t)’us,/\(t)>dt = —j:<u/’5'/\(t), us,/m(t)>dt + aj:‘<u’m(t), ue,/1<t)>dt +
[T s, e+ e[ T (O

Since 0 € A, (2)(0),A, (t) is maximal monotone, using lemma 1, lemma 3 and (3b),we get

sl = [t Ol < 141+ Tu < 71T - Tt
SO

[w, < Tl (5)
Invoking lemma 3, we obtain

luca (Dl < 72 uls | < T2 £ (6)

Differentiate (3a) with respect to ¢, multiply the resulting equation by u’. , (¢) and integrate over (0, T),we have

[Fr o = = [T ) s af Gl (0, ()
[ G s (0), w, )i ef a0 )

From (6) and 3)@ it follows that there exists a function g: [0,7T] — H, which is differential almost
everywhere, g’ € E,A, > 0, such that

(At + W u, (e + h) = A()u () u, (6 +h) —u (1)) =
- h“(t + h) - g(t)H H ue,/l(t + h) - us,a(t)HL(l + “AA(t)us,A(t)H) =

2
—2hTS LI fillgCe + h) = gD+ [A(Du, ()] (8)
where L = sup{L(l u. ,(t + h) um(t)H):t,t+ h€[0,T], denote L, = ZT%L £ | . From 3)® we know
that A, (¢)u, , (t) is differential almost everywhere. Hence we divide (8) by h*, let h — 0", then yields
d ’ ’ 7 ”
<&(Ah<t>us,,1(i>),ue,/\(t)> =- I ||g (”H(l + fe(l)“‘l' 5” ue.a(l>|l+ ‘a‘ ||ue,/1 H + “usA(l)“)
(9)

’

Integrating (9) over (0, T), by (5),(6) and Holder inequality, we have
' 1
jo <£(A,\<t)ug./1(l)’u’E’A(t)>dt =-L T2 | g ‘ _ L | P ‘ f
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L Pl g |1l =TalL Tl g |11 -Lilg ;] (10)
Putting (10) into (7),using lemma 1, (3b),(4) and (5), we find

.

+el Tl g || fl+ L Tlallg |]f

T
u’é,x\2=J | (OPde < L, T2 1 g'| + L, | ¢ | +
0

Lilg T+ Tl
Noting (2) it follows that { A;u, ;| is bounded in E, hence by lemma 2, we can let A = 0" . Specifically, let
u. = limu, ,(in E), where u, € D(A) (| D(B) satisfies

€
A—=>0

Bu. + .Zu, + eu, D f. (11)
or equivalently
(1) +au (1) + A u (1) + eu (1) D £ (1) ae. 0t < T (12a)
{ue(T) =-u(0), u'.(T) =-u_.(0) (12b)
Multiplying (12a) by u (t) and integrating over (0,7) , using the maximal monotonicity of A(t),similarly to
(5), we also have | .| < T|/f.|. This and lemma 3 leads to

) 3
<AL e < T2 £ viee[0,7]
Forming the inner product of (12a), - (123),7 with u, () - u,y(t) , and integrating the result over 0,7),

| u. :

making use of the maximal monotonicity of A(¢) and lemma 1, we obtain

" (0 = w0, w0 = g ()de [ e () =y (0,0 () =, (1))dr <
[ (G = A0, () = ()

hence

T
- P < | () = gy (Do) = (D] de +

[ £ = £ 1) = w(Dde < e, (e + ) + | - 1]

where ¢,,c, > 0 is independent of €, 7. For f. = f(e = 0")(in E), so {u/.| is a Cauchy sequence in E.
Recalling lemma 3, we get
1
Hue(t)—u,](t)Hg T7‘u’€—u'7‘ vt e [0,T]
hence {u, lisa Cauchy sequence in C ([0,T];H). Let u, > u(e —0*) (in C([0,T]; H)), the closedness of
%+ B in E enables us to pass to the limit in (12) as ¢ — 0" ,and conclude that (B + .Z)u > f as desired.

3 Application

In this section we give a simple example in a partial differential equation. Let ¥ ¢ R x R be a maximal
monotone set, 0 & y(0), let 2 c R" be a bounded domain with smooth boundary 0. Now we consider:
(’)2

ﬁu(t,x) =—Au(t,x) + g(t)ult,x) + f(t,x) (t,2) € (0,T) x Q
%Z‘V(W (t,x) € (0,T) x 90 (13)
u(O,x) =_u(Tsx>a u/(o,x) =—u/(T,x) in 2

Here we assume H = L%Q),g:[(),T] — R" is continuous, g’ € 1200, 1), fe L?(0,T; H),we define
A(t)u == Au + g(t)u VYu€ D

D={u€L’(Q):-Au€ L’(Q),gu € L’(Q), ;—Z =—y(u)i

From example 1 we know that 1A() }OS,ST are maximal monotone operators in 12(Q) and satisfy hypotheses 1),2)
and 3'), thus (13) is equivalent to the abstract second order equation in L’ ().
{u”(t) = A(t)u(t) + f(1) a.e. t € [0,T] (14a)
w(0) = - u(T), v (0) =-u(T) (14b)
So by the theorem we know that problem (14) has a unique solution u & H(Q).
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