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Finite element method of the eigenvalues
of Sturm-Liouville’s problem
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Abstract:  This paper considers the finite element method of the approximate value of eigenvalues of Sturm-Liouville’s
problem. The proof of our main result is based on the variational method. Linear interpolating functions are made by
interpolation method, the problem of the approximate value of eigenvalues becomes the calculation of eigenvlaues of a matrix.
Then the finite element method of the approximate value of the eigenvalues is obtained, and accuracy of (n — 1)-th
approximate value is estimated by n-th approximate value. When n is increased, the accuracy of eigenvalue A, is increased.
When n is appropriately selected, the accuracy of A, we need is obtained. This finite element method is significant both in
applications and in theory.
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1 Main Result

Let (a,b) c Rbe abound interval. We consider the approximate value of the eigenvalues of Sturn-Liouville’s
problem
—[p(x)y ) + q(x)y = As(x)y xG(a,b)} )
y(a) = y(b) =0
where p(x) € C'([a,b]), q(x),s(x) € C([a,b]), such that p(x) >0, ¢(x) =0,s5(x) >0, x € [a,
b].

=50 The approximate value of

The estimates for bound of (n + 1)-th eigenvalue of problem (1) are well known
the eigenvalues of a similar problem (1) is calculated by Galerkin method® . The computational method is simpler,
and accuracy is higher, but a lot of integral computation is required, and the condition is stronger, i.e. p(x) =y,
> 0 and s(x) = p, > 0. In this paper, the approximate value of the eigenvalues of Sturn-Liouville’s problem (1)
is calculated by the finite element method. The condition in Ref. [6] is weakened, i.e. it is only required that
p(x) > 0 and s(x) > 0. This finite element method is interesting and significant both in applications and in
theory.

Our main result is based on the variational method. First of all, a theorem is proved. Secondly, linear
interpolating functions are made by interpolation method. At last, the problem of the approximate values of
eigenvalues becomes the calculation of eigenvlaues of a matrix, the finite element method of the approximate value
of the eigenvalues is obtained immediately.

Let0 < A, < A, < *** < A, < *** denote the successive eigenvalues for (1). Let C' ([ a,b]) denote the set
of functions having first derivative continuous in [a,b]. Let C(l, ([a,b]) denote the set of functions in C' ([ a,
b]) with compact support in [a,b]. Let Ly([a,b]) denote the set of measurable functions that are 2-integrable
in[a,b] with compact support in [a,b]. The set of C(l)([a, b]) is the dense subset in Lé([a, b]).

Also let

D(y) = 2 TpOG + gy Ja @)
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E(y) = %Jbs(x)yzdx (3)
_ D(y)

J(y) = EC(y) } (4)

y(a) = y(b) =0

Let u £ 0 be a function, and u € Lé ([a,b]),u € Lﬁ([a ,b]). If u is a critical function of functional

J(y), then J(u) is called a critical value.
Theorem A Ci([a,b]) function u is a critical function of (4) if and only if u is an eigenfunction of (1) .

Consequently the critical value J(uw) is equal to eigenvalue A of (1), i.e. J(u) = .
Proof letu <0, u € C(l)([a,b]). Let u be a critical function of J(y). As y 0, E(y) > 0, then we

have E(u) > 0. Finding the variation of J(y), we have
6J(y) = [EC(y)oD(y) - D(y)SE(y)] = ﬁ[c?D(y)—](y)@E(y)] (5)

~—|

1
E*(y)
Replacing v in (5) by u, let J(u) = A, we obtain

1 1

Since u = 0, we get

oD(u) - W0E(u) = 0 (6)
By the variation for (2),(3) and integration by parts, for any dv € C(l)([a, b1), we have

oD(u) = Lb[p(x)u'é\v/ + q(x)udv]dx = Jj{— [p(x)u' ] + g(x)uldvdx (7)

SE(u) = Jbs(x)uﬁvdx (8)
By (6), (7), and (8;, we obtain

Lb{—[p(x)u’]’+q(x)u—As(x)u}3vdx:O Vov e Cpla,b]) (9)

Therefore — [p(x) T g(x)u = As(x)u satisfying the condition u(a) = u(b) = 0, i.e. a critical function
u in (4) is an eigenfunction of (1). Similarly, the eigenfunction u of (1) is a critical function in (4). Then the
critical value J(u) is equal to the eigenvalue A of (1), i.e. J(u) = A. The set of Co([a,b]) is the dense
subset in Li([a,b]), consequently the theorem also holds for any u = 0, u & Li([a,b]) and v’ € Ly([a,

bl).
2 Finite Element Method

By the theorem, the approximate values of the eigenvalues of (1) are calculated by the finite element method.

Leta = 2 < 2, < 2y < *** < %, = b,y(xi) =y, =0,1,2,*,n, go,»(x) are given by

T x € [xi—laxi)
X; — X
1 x = x;

§Dl(x> = o x

= x € (xisxm]
Xigl — X
0 x & [xi—l’xn.lJ
Let

n-1

v, (2) = D) yipi (x) (10)

i

¥is @ y,(x) is continuous in [a,b]; ©® v (x) has some discontinuous point, but is

such that @ ¥ (x;)
2-integrable.
Replacing y in (2) and (3) by y,(x) in (10), we have

D0y, (0) = 5[ [ Z,yso) + () gm)z]dx -
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1 o=h e
—tzlfu[p(xmﬁso,’-yiyj +q(x) @igyiy; Jda (11)
Ely, («x jj (x) @ipyyiy; dx (12)
Let
a; :J.:[p(x)gog(x)gp;(x)+q(x)g0igoj]dx, a; = a; i,j=1,2,,n-1 (13)
b; = Jbs(x)¢[(x)¢j(x)dx, b; = b, i,j =1,2,,n-1 (14)

By (11), (12), (13), and (14), we obtain

1 1
Dly,(x)] = D(yi,y2s s yu) = 5 Zayyy] =5Y Ay, 4 = g

(15)

i,7=1
n-1
1
E(yn(x>) - E(yl ’y27'“’yn 1> - 2 Zlby}”% = §yTBy’ b[/ = bj[ (16)
i
where A = [a; ] is usually a positive definite or a positive semidefinite matrix; B = [ b, ] is a positive definite

matrix. Consequently the problem (4) becomes the problem of critical values of a multivariate function, i.e.

D(yisy2, yuct)
E(yl’yZ’.”’:yn—l)
As (¥ 92, s ¥ur) £ 0, (1,92, , ¥,_1) is a critical point of functional J, we have

'](yl’yz"“’yu—l) =

d .
Q_%J(yl’yZ’”"yn—l) =0 i=1,2,,n -1

The value corresponding to functional J is called the critical value, i.e. J(y,,y,,"**,y,_;) = A. Since

i_i(ﬁ)_i(g(w_ 9E)_1(aD ]aE) 1(870_A3E)
dy” T Iy, \E) T E*\ 7 dy, dy,) — E\dy, Jy; E\dy, dy,
by (y1, 92, s ¥u1) 7 0 and (18), we obtain

aD IE .

Gy ~Agy =0 i=l2a-d

Since

n—

a n-1 1
Q—%D(}’nyz,-._,yn_l) 2 Z/ayyj, E] E(yl,yz’ ..’yn_1> — ?jzl bi,-yj

so that by (19)

d—

n-1 n-1
2o ag; = A2 by,
j=1 j=1

By (20), we get
Ay = ABy

Consequently the problem (1) becomes the algebraic problem (21) of an eigenvalue.

(17)

(18)

(19)

(20)

(21)

The interval [ a,b]is divided into n subintervals, the matrices A and B in Eq.(21) are calculated.

Corresponding function J is

D) = 53 G+ gyl = 5 N
On the i-th interval, the linear interpolating function is

y(x) = r”(x)jq4 + 7o (2)y,
= 5 Tﬂ( ) 7” .

X — Xy X — X

i i

x
where 7, (x) =

Replacing y in I, by y'” (x) in Eq.(23), computing I,, we obtain

I, = jl p(x)[(r/il)zyal + 21',;'11':'29’,'71}’[‘ + (T',-z)zyﬂdx +

i-1

Jvl ‘]<x)[(751)29’371 + 2T,y + (z‘iz)zyﬂdx =1y + I

“i-1

(22)

(23)

(24)
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By 7/ (x) = ﬁ and 7/, (x) = x-—ilx-,l’ computing /;; in (24),we have
Yio = 2yiayi + Y[
7 Yot = 2 ,J d ’s
i = x ) pr(x) x (25)

By taking p(x) = p; in [%_,,x ] and (25), we get

_ P I PV 2
i = — 1<yl 2yi1y: + ¥7) (26)
X — X x - x
By 7, (x) = —— and 7,(x) = m, computing I, in (24),we get
I = [ 1) [ = 2Py 4 20 - 2 ) ( 732 d (27)
2 = (x - x, )2 X — X -1t ANx = X)X = X)) Yia Y+ X =Xy ) Yy Jdy
R i i-1
By taking g(x) = g¢; in [x_,,x; ] and (27), we obtain
Iy = 0o = 0 )+ vy +97) (28)
Using (26), (28), and (24), we have
L =1, + 1, = ﬁ(% -2y 0y + y2L> + %(xl - xi—l)(yzi—l + YiaYi t y%) (29)
[ i-1

Combining (22) and (20) ylelds

n

qi
Dly,(x)] Z,I = 5 ‘[x_;xl(% = 2yiayi + y2z> +§(xi - xi—l)(yzi—l +

y,1y1+y>] 2y Ay

where y = 1y, 92,7, Yu_i iT, A = [alj] is a three-diagonal matrix. The main diagonal element of matrix A is
_ b P 1 o
a; = h, + ho +3 (gih; + g1 hiyy) 1 =1,2,,n -1 (30)
The secondary diagonal element of matrix A is
pi+ 1 .
Qi o1 = Ay, = — h—l + qu'nhnl i =1,2,,n -2 (31)

i+l

Similarly, we have
1 n X,‘
Ely (0] = 520" s(oydx (32)

i=1

By taking s(x) = s, in [x,_;,x;] and (32), we get

n

1 Si
Ely, ()] = 527 3 (i =0 ) (i + vy + 970 = 2y "By
-1
where B = [b; ] is a three-diagonal positive definite matrix. The main diagonal element of matrix B is
bi= 5 Cshy 4 siihi) 0= 12,0 n = (33)
The secondary diagonal element of matrix B is
bi,i+1 = bi+1,i = %Swlhnl L = 1,2,"',", —2 (34)

where h; = x; — x;_;; pPi = P<xi); qi = ‘]<xi>; S = S(xi)-
Using (30), (31), (33), and (34), the matrices A and B are calculated. The eigenvalues of Ay = ABy can

be calculated. Consequently we obtain the approximate value of eigenvalues of the problem (1) .

3 Two Examples

Example 1
{—y”z/ly x € (0,1)
y(0) = y(1) =0
Let p(x) = l,q(x) =0,s(x) =1 satisfying the condition of (1). The interval [0, 1] is divided into n same
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subintervals. By taking h; = h = %, using (30), (31), (33), and (34), the matrices A and B are calculated,

we have

- ny;. +2ny; - ny., = A(}g;: + %yi + jg;ll) i=1,2,,n - 1}

(35)

Yo = ¥u =0
By taking n = 25 in (35), we get the approximate values of eigenvalues A, = 9.882 6, A, = 39.6867, A; =
89.8834 and A, = 161.266, in comparison with the accurate value of the eigenvalues of the original equation, A,
and A, each have two effective digits. A; and A, each have one effective digit.

Example 2
{—[(x+1)y’]’+xy=/\(x2+1)y x € (0,1)
y(0) = y(1) =0

Letp(x) = x + l,q(x) = x,s(x) = 2° +1 satisfying the condition of (1). The interval [0,1]is divided into n
same subintervals. By taking h, = h = 1/n, using (30), (31), (33), and (34), the matrices A and B are

calculated, we obtain

g =2 a2iv 1+ 2ty o L L2 e D] = 1,2,
3n 3n
. i+ 1 n’ o+ 1 .
@ipg = Qy; =—n—1 -1+ 5 bir = by = 3 i=1,2,,n -2
’ ' 6n ’ ’ 6n

(L—n—i)yifl+(2n+2i+1+2l+1)yi+(L+1—n—i—1)yi+1=

6n’ 3,2 on?
2 ; 2 2 .2 . 2 > ”
+ -1 20"+ i+ (4] + . 36
’1(,7‘6(%%4 - l3n3 L ) i + n6n3L yi+1) i =1,2,,n -1 (36)
Yo =¥, =0

By taking n = 20 in (36), we get approximate values of eigenvalues A, = 11.9905, A, = 46.267,A;, = 104.729
and A, = 189.369, in comparison with the accurate value of the eigenvalues in the original equation, A, and A,
each have two effective digits. A; and A, each have one effective digit.

By taking n = 60 in example 1, we get approximate values of eigenvalues A, = 9.86985, A, = 39.4904, A,
= 88.9879 and A, = 158.747. A, and A, each have three effective digits. A; and A, each have two effective digits.
Therefore the accuracy of (n — 1)-th approximate value is estimated by n-th approximate value. When n is
increased, the accuracy of eigenvalue A, is increased. When n is appropriately selected, the accuracy of A, we need

is obtained.
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