Journal of Southeast University (English Edition)

Vol.20 No.l Mar. 2004

ISSN 1003—7985

Design and development of WLAN access point
based on Bluetooth and uClinux

Zhang Lei"’

Shen Lianfeng'

(' National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)

(Institute of Communications Engineering, PLA University of Science and Technology, Nanjing 210007, China)

Abstract: This paper describes the design and development of a wireless LAN (WLAN) access point based on
Bluetooth and uClinux. To make the best use of high-speed serial communication capability, several methods
such as modifying baud-rate of serial port driver, utilizing buffer area and adding flow-control were adopted.
After analysis of scheduling and interruption handling, modifying the timer’s parameters was put forward as a
method to control the timer interrupt. In this way, data throughput and system stability were obviously
enhanced. Meanwhile, migration of the Bluetooth protocol stack was detailed and some successful applications

of our LAN access point were presented.

Key words: device driver; serial port; scheduling; interrupt handling

Bluetooth wireless technology is one of the most
important new technologies in wireless LAN (WLAN)
area for embedded systems development. Thousands
of products are likely to incorporate Bluetooth wire-
less technology for short-range voice and data com-
munications.

LAN access''' is a traditional Bluetooth applica-
tion profile among many usage models. Firstly, this
profile defines how Bluetooth-enabled devices can
access the services of a LAN using PPP. Secondly, this
profile shows how the same PPP mechanisms are used
to form a network consisting of two Bluetooth-enabled
devices.

The following roles are defined for this profile.

o LAN access point (LAP) This is the Bluetooth
device that provides access to a LAN. The LAP
provides the services of a PPP server. The PPP
connection is carried over RFCOMM. RFCOMM is
used to transport the PPP packets and it can also be
used for flow control of the PPP data stream.

e Data terminal (DT) This is the device that
uses the services of the LAP. Typical devices acting as
data terminals are laptops, notebooks, desktop PCs and
PDAs. The DT is a PPP client. It forms a PPP
connection with a LAP in order to gain access to a
LAN. A DT uses a LAP as a wireless means to connect
to a LAN. Once connected, the DT will operate as if it
was connected to the LAN via dial-up networking. The
DT can access all the services provided by the LAN.

Received 2003-10-24.

Foundation item: National Key Technologies R&D Program (No.
2001BA102C).

Biographies: Zhang Lei (1972—), male, doctor, lecturer; Shen Lianfeng
(corresponding author), male, professor, Ifshen@ seu.edu.cn.

Thus, the LAP will be the key element of our
project. The performance of LAP will have great
impact on the whole application. So the design of our
LAP is detailed in this paper.

1 Hardware Design Based on 32-bit MCU
and Bluetooth Chip Set

From the point of view of hardware construction,
LAP is a typical embedded system. It must embrace
basic system elements such as microcontroller (MCU),
RAM, and Flash. Ethernet interface and high-speed
hardware channel to the Bluetooth baseband module
are also required since there are protocol stacks to be
executed. The hardware design is depicted in Fig.1.

Bluetooth | Serial Ethernet
- .
module MCU LAN

BC212013
() (MCF5272)

l Memory bus

Fig.1 System hardware

The MCF5272"% microprocessor from Motorola
has been chosen as the microcontroller. It is a highly
integrated ColdFire microprocessor offering a new set
of communication peripherals, such as a 10/100
Ethernet controller and a USB module, but it supports
popular general-purpose peripherals included on
previous ColdFire standard products such as serial
ports, timer and etc. Its integrated Ethernet controller
meets the interface requirements of LAN while its
high-speed serial port meets the access requirements
of Bluetooth baseband module. Based on a Version 2
(V2) ColdFire core, it also achieves the highest V2

2 Zhang Lei, and Shen Lianfeng

performance yet, with 63 Dhrystone 2.1 MIPS at 66
MHz. Thus, it is competent for both Bluetooth and IP
protocol processing.

The BlueCore2-External (BC212013)"’ from
CSR has been chosen as the Bluetooth baseband
module. It is a single chip radio and baseband IC for
Bluetooth 2.4 GHz systems. It is implemented in 0.18
pm CMOS technology with full industrial temperature
operation. Its high-speed serial interface working with
its counterpart in MCF5272 offers the ability to reach
the maximum rate'* (723 kbit/s) as defined in
Bluetooth specification.

2 Bluetooth Protocol Stack and Software
Design Based on uClinux

From the aspect of software, Bluetooth protocol
stack is ready for porting while the whole system is
lacking of operating system (OS) support. After
evaluation on different options, a popular open-source
OS — uClinux"®’ has been chosen. It is used in
numerous electronic devices.

uClinux2.0.38 is an open source project funded
and maintained by Lineo. It was made popular by its
ability to run on processors without memory
management hardware and with a typical kernel
footprint of only 512 Kbytes or less.

o It inherits stability and robustness from Linux;

e It supports a large number of devices, file
systems, and networking protocols (especially TCP/
IP);

e No license fee leads to very low cost;

e It gives developers complete visibility of the
source code based on GPL license;

e Kernel can be customized on demand.

After adoption of uClinux, additional work is
required to optimize the operating system. Improve-
ment on uClinux for MCF5272 can be divided into
two parts: one is rewriting serial drivers, the other is
modifying parameters of the timer.

2.1 Serial driver

Since the serial port is the hardware channel
between MCF5272 and BlueCore2, the performance of
this driver has a great effect on the whole system.
After the installation of the uClinux on our testbed,
the serial driver worked normally. But it has
limitations on speed and interruption of service since
it was originally designed only for common use.

Firstly, minor errors in the calculation of baud-
rate have been corrected according to definitions of
the fractional divider from MCF5272 user manual®'.
In this way, further revision on the baud-rate table has

been made so that the new serial driver not only
supports common rate 115.2 kbit/s but also ultra high
rates such as 921.6 kbit/s. It is this ultra high rate that
can meet the peak throughput.

Secondly, the receive parts of the driver have
been rewritten. With a view to compatibility, the
original design issues receive interrupt to CPU after
receiving one byte. But this solution results in great
performance degradation in circumstance of high-
speed communications for its high interruption fre-
quency and excessive overhead in context switching.
Luckily, there is a 24-byte receive FIFO in serial ports
of MCF5272. If the designated fullness level of
receive FIFO has been reached, serial ports can issue
an interrupt signal. If the receiver FIFO has timed out
at defined interval with unread data below the FIFO
fullness level, serial ports will raise an interrupt signal
to solve the problem of trailing data.

Thirdly, for the sake of data integrity and system
stability, the mechanism of flow control to the serial
driver has been added. It is much like the interrupt
mechanism detailed above. If the designated fullness
level of receive FIFO has been reached, serial ports
can raise flow control signal to Bluetooth modules
through the RTS line. In this way, it inhibits the
sender from sending excessive data, which may induce
overflow in hardware FIFO.

Other minor corrections involve modifying some
code sequence and stripping down codes unrelated to
serial ports of MCF5272.

After this enhanced driver is put into use, it has
been debugged in the receive buffer among kernel
space. The results show that data can be delivered
from serial ports to low level drivers under an ultra
high-speed condition (921.6 kbit/s). But data cannot
be sent to Bluetooth protocol stack in user space
normally. Therefore, the performance problem must be
considered at system level.

2.2 Timer

Fig.2 shows that the data stream of serial port
flows through the whole embedded system in three
stepsm. Firstly, receiving serial data byte by byte;
once the defined threshold of FIFO fullness has been
reached, the serial port raises the interrupt signal to
CPU. Secondly, the CPU executes interrupt service
routine to move data from FIFO to receiver buffer in
system memory as quickly as possible. Then the CPU
tags a task flag in the system for further processing
before it exits the interrupt circumstance. Thirdly,
when the timer interrupt has been serviced periodical-
ly, the CPU checks this task flag. If the flag has been

Design and development of WLAN access point based on Bluetooth and uClinux 3

marked, the CPU will move data from the receive
buffer to process buffer. Specific codes would be
executed to do further processing on the data before
the Bluetooth stack in user space obtains these data

via system call.
Timer interrupt Protocol stack
Receive Process I::>

- buffer HH buffer
From the description above, analysis must be

Fig.2 Data stream from UART

focused on the data flow between the receive buffer
and process buffer since debugging shows that there is
no problem in the serial driver. In view of the system
scheduler'®”!, the timer interrupt becomes the impetus
of further data movement. If the frequency of timer
interrupt is too low, the receive buffer cannot be
emptied in time. This will result in the overflow of the
receive buffer and a system crash. On the other hand,
if the frequency of timer interrupt is too high, the
system will lack the time to deal with tasks in the
process buffer. This will result in overflow of process
buffer and also lead to a system crash.

After the kernel codes have been read up and the
actual data flow has been traced, the overflow will
appear in the process buffer. The solution of this
problem is simpler than its analysis. Lowering the
frequency of the timer interrupt will give enough time
for the system to deal with additional tasks in the
process buffer. This frequency value becomes vital to
the throughput and stability because it has great
effects on different parts of the whole system. After
tradeoff among different tasks, actual throughput test
and stability test, the frequency has been changed
from 10 Hz to 5 Hz. Thus, the LAP system can work
regularly under such high-speed (921.6 kbit/s).

2.3 Bluetooth protocol stack

Along with the development of the LAP, existing
open-source Bluetooth protocol stacks such as Bluez,
Openbt and Affix were also considered for adoption.
The reasons we use our own codes instead of open-
source protocol stacks are detailed below:

e Our own protocol stack has been verified. Mature
products built upon this protocol stack on the PC
platform have already been widely used. The
performance and stability of our codes have been
tested and verified. Rich control and debugging
functions have been developed through our own
effort. Openbt does not provide an interface to L2CAP
layer. It has not been upgraded since 2001.

e Our protocol stack has been written in ANSI C. It
can be easily migrated to other platforms with
different OS or hardware. BlueZ stack has been
contained in Linux 2.4.x and it is difficult to do re-
verse porting to Linux 2.0.x. Its complex networking
function is not applicable to LAP.

e With respect to the intellectual property of our
products, it is better to use our own codes. If these
open-sourced protocol stacks were adopted,
modification and enhancement of them would have to
be released as a GPL license. In our realization, setting
up our stack in user-space can protect the intellectual
property since there is no module support in uClinux.
Another benefit is that they are easily debugged.

Based on the definition of the LAP profile and
discussion above, Fig. 3 depicts our solution. PPP
daemon is a standard Linux program to control PPP
links in user space.

RFCOMM |« PPP daemon
[2CAP
H(il User space
Y TTY Kemel space
TTY driver Bluetooth IP protocol
driver o]
UART driver A PPP driver

Fig.3 Realization of protocol stack UART

3 Application Examples

The standard application scenario (see Fig.4) is
that multiple DTs use our LAP as a wireless means for
connecting to a LAN. Once connected, the DTs will
operate as if they were connected to the LAN via dial-
up networking. The DTs can access all the services
provided by the LAN. The DTs can also communicate
with each other via the LAP.

LAN access point

LAN | _ ﬁ Data terminal C
— 9_ ..

Data terminal B

Fig4 LAN access by multiple DTs

Data terminal A

Furthermore, application scenarios have been
extended in different fields. It has been delivered to
customers in colleges as a teaching experiment
platform of new communications technology. In Hong
Kong, it has been used as a mature application
development platform. A revised version of LAP has
exhibited its high-speed capability in the project of
transferring audio data point-to-point. The most
successful application is that our LAPs were applied to

4 Zhang Lei, and Shen Lianfeng

wireless medical treatment communication sub-system
during the SARS period.

The wireless medical treatment communication
sub-system is composed of Bluetooth data terminal
and LAP. The structure of this sub-system is depicted
in Fig.5.The practicalities of LAP and DT are depicted
in Fig.6.

Administration
software on PC

DT
controller
sensor

Fig.6 Practicalities of LAP and DT

The DT, controller and sensor can be integrated
in a printed circuit board, which is the same size as
that of a wristwatch. Thus, patients can easily wear the
“Bluetooth watch” (Fig.6). A LAP may be put near
every sickroom or ward. All the LAPs are connected
to the LAN via standard cable.

When the LAP is power-on, it automatically
communicates with the administration PC through its
LAN port. Then, it is able to initialize the Bluetooth
protocol stack as quickly as possible. After
initialization, the LAP enters into the state of scan in
which it is ready to accept the connect request from
DTs. When patients with our “Bluetooth watch” come
into the area under the control of this LAP, links will
be put up between LAP and DT in the “watch”. After
regular interaction on protocol, DT can send data such
as temperature and pulse gathered from sensor
upstream to administration software on the PC via
LAP. The PC can also request these data downstream
and gather the additional information on the location
of patients from the location of the LAP.

The performance pertaining to throughput and
stability is also verified in this case. This sub-system
is especially useful under the -circumstances of

treatment with large-scale severe infectious diseases
such as SARS.

4 Conclusion

The design in this paper deals with the problem
of throughput and stability. After researching on
drivers and system mechanism, we put forward
satisfactory solutions. Firstly, to make the best use of
the high-speed serial communication capability of the
hardware, several methods, such as modifying
interface speed of serial port driver; improving the
receiving flow; utilizing the mechanism of buffer and
adding the mechanism of flow control, have been
adopted. Secondly, analysis has been carried out on
scheduling and interrupt handling of the operating
system. Modifying specific parameters solves the
problem pertaining to timer interrupt that has great
effect on throughput and stability.

The LAP built up uClinux has walked out of the
lab and become a real product accepted by the market.
The typical application cases are illustrated above. So
it is proved, on the whole, that our choice of the
platforms is right and the design is successful. A new
design has been started along with the advance of the
Bluetooth specifications and market requirements. A
USB host controller can be added into the system to
enrich the type of interface and improve the
throughput. An enhanced version ColdFire processor
MCF5282 can be selected as the microcontroller for
its DMA method in serial data movement compared
with the inefficient IO method of MCF5272.

References

[1] Bluetooth Special Interest Group. LAN access profile
[EB/OL]. https: //www. bluetooth. org/ foundry/adopt-
ers/document/9 _Lanaccess/en/1/9 Lanaccess.zip. 2001 -
02-10/2002-04-09.

[2] Motorola, Inc. MCF5272 ColdFire ® integrated micropro-
cessor user’s manual (REV 2)[EB/OL]. http: //e-www.
motorola. com/files/dsp/doc/ref _ manual’MCF5272UM.
pdf. 2002-03-12/2003-07-08.

[3] CSR, Inc. Bluecore2-external data sheet| EB/OL]. http: //
www. csrsupport.com/ public/83 BlueCore2-External Data
Sheet (BC212015-ds-001g).pdf. 2003-03-18/2003-04-21.

[4] Bluetooth Special Interest Group. Bluetooth core _specifi-
cation_vl. 2 [EB/OL]. https: //www. bluetooth. org/
foundry/adopters/document/Bluetooth _ Core _ Specifica-
tion_v1.2/en/1/Bluetooth Core Specification v1.2.zip.
2003-06-10/2003-07-18.

[5] Yaghmour Karim. Building embedded Linux systems
[M]. USA: O'Reilly, 2003. 30 —31.

[6] Rubini Alessandro, Corbet Jonathan. Linux device drivers.
2nd ed.[M]. USA: O'Reilly, 2001. 269 —274.

[7] Bovet DP, Cesati Marco. Understanding the Linux
kernel.2nd ed.[M]. USA: O'Reilly, 2002. 164 —181.

Design and development of WLAN access point based on Bluetooth and uClinux

E F uClinux #0 Bluetooth £ /KA B WLAN
ENEEFIZITMAFL
k& Mok E!

(AAHXFHHEREARELEERE, K 210096)
CMAERIRFEIEIRER, d@R 210007)

FE: 8 7 AT uClinux Fe i T H KRG LEBRRNBENZXE X FRHZE AT A0 XER
Yo Fik S+ BATEAZ RS, KA TR BT 2R AERF P oG48 2 ok 4R A BE F AR SRR
FIEH ORI B RIF R AR R ARG AE P BT ALRIANT, BB T AR AR
R BAKN T ERER AP, Z 57 2B RS TREEALE WRT 24BTH; B,
#i& T AT uClinux # 3 T WU a9 B4 B LR JUAS 28, 4B T2 FATE T HBRA 5
5] 4 R B R

KB AW, AT B PRI

FESES: TP393.3

