Journal of Southeast University (English Edition)

Vol.20 No.l Mar. 2004

Generating test cases for software configuration testing

Nie Changhai'’ b4
(' Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China)
(*School of Computer Science, National University of Defense Technology, Changsha 410073, China)
(Jiangsu Institute of Software Quality, Nanjing 210096, China)
(*State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China)

Xu Baowen

Abstract: Software configuration testing is used to test a piece of software with all kinds of hardware to ensure
that it can run properly on them. This paper generates test cases for configuration testing with several common
methods, such as multiple single-factor experiments, uniform design, and orthogonal experiment design used
in other fields. This paper analyzes their merits and improves the orthogonal experiment design method with
pairwise testing, and decrease the testing risk caused by incomplete testing with a method of multiple-factors-
covering. It also presents a simple factor cover method which can cover all the factors and pairwise
combinations to the greatest degree. Finally some comparisons of these methods are made on the aspects of

ISSN 1003—7985

test suite scale, coverage, and usability, etc.

Key words: software testing; configuration testing; test case; combination cover

Configuration testing is an absolutely necessary
step in software testing. It tests software operation
with all kinds of hardware devices to check whether
some bugs exist caused by the software when the
software is running on these hardware devices. As
hardware devices, which include the computer, may
come from different producers, to ensure the software
under test can run on all kinds of hardware
combinations to the greatest degree, configuration
testing must be made.

The workload for configuration testing is usually
enormous. Generally the first step of configuration
testing is to determine which types of hardware
devices should be tested according to the software
under testing. The next step is to determine how many
different products there are for each type of hardware
device and which of those products are popular now
or have been popular and then make some separation
of these products. Finally we must decrease all the
hardware combinations to an appropriate size'!.

This paper proposes to generate test cases for
configuration testing with some common methods
used in industrial and agricultural production and
scientific multiple

study, such as single-factor

Received 2003-05-20.

Foundation items: The National Natural Science Foundation of China
(No. 60373066); Opening Foundation of State Key Laboratory of
Software Engineering in Wuhan University; and Opening Foundation of
Jiangsu Key Laboratory of Computer Information Processing
Technology in Soochow University.

Biographies: Nie Changhai (1971—), male, graduate; Xu Baowen
(corresponding author), male, professor, bwxu@ seu.edu.cn.

experiments, uniform design, and orthogonal
experiment design, etc. and analyzes the merits of
these methods and then presents a method of single-
factor cover which can not only test all the products
of each type of hardware device, but also cover all the

pairs to the greatest extent possible.

1 Generating test cases for configuration
testing with common methods

Suppose that software under test (SUT) has m
classes of hardware devices to be tested through some
preprocessing, each class of hardware devices has a,;
(1 <i<m) types of products. The main task of
configuration testing is to check whether SUT can run
successfully on all kinds of hardware configurations.
When the number of n =a, xa, X ---a,, is small, we
can make exhaustive testing. But it is usually very
large and exhaustive testing is not feasible. Hence, a
software tester needs to efficiently generate an
effective set of test cases as a means of verifying the
correct work of SUT. Following we present some
methods for test suite generation of configuration
testing.

For convenience, we only consider five classes of
hardware devices that comprise the configurations in
Tab.1.

Tab.1 Hardware devices table for configuration testing

Graphic card Sound card ~ Modem Printer Mainboard
Al B1 Cl D1 El
A2 B2 2 D2 E2

Generating test cases for software configuration testing 27

1.1 Multiple single factor experiment

Since each different combination of hardware
devices creates a different configuration, and in Tab.1
each of the five classes has two different products, the
table defines a total of 2° = 32 different
configurations. Suppose for argument’s sake that 32
tests are too many, as each individual test is
expensive. Then one alternative will select a typical
value for each parameter and then vary one parameter
in each test until all the parameter values are covered.
Tab.2 shows the resulting test set. It has 6 tests instead
of the 32 required for exhaustively testing all the
possible parameter combinations. However, although it
covers all the individual parameter values, it covers
only 30 of the C: x 2° = 40 possible pairwise
interactions between the test parameters.

Tab.2 Test suite for multiple single factor experiment

Al Bl Cl D1 El
A2 Bl Cl D1 El
Al B2 Cl D1 El
Al Bl 2 D1 El
Al Bl Cl D2 El
Al Bl Cl D1 E2

1.2 Pairwise testing
Definition 1 Let A be a matrix A = (a;)
a;el(i=1,2, - , m), such that

if any two columns ¢; and ¢, of A satisfy: all the

nxm?

sy j=1,2, e

pairwise combinations of symbols between set T, and
set T that appeared the same number of times in the
ordered pairs formed by column : and column j, then
A is called an orthogonal array; if all the pairwise
combinations of symbols between set T and set T,
appeared at least once, then A is called a pairwise
cover table. The method of experiment design based
on an orthogonal array is called an orthogonal
if the method of

experiment design is based on a pairwise cover table,

experiment design method;
then it is called a pairwise combination cover method,
or pairwise testing in software testing.m is the number
of test cases. Every row of A is a piece of a test
case” .

By the same method, we can call the matrix A a
3-way cover table, if any 3 columns ¢;, ¢; and ¢, of A
satisfy: all the triple-wise combinations of symbols
among set T, T, and T, appear at least one time in the
ordered 3-tuples formed by column i, column ; and
column k. The n-way cover table is defined in the

same way as above. The method of experimental
design based on the n-way cover table is called the
multiple factor combinations cover method.

For example, to SUT we can design a pairwise
combination cover table (see Tab.3) for pairwise
testing according to the hardware devices table for
configuration testing (see Tab.1).

Tab.3 Pairwise combination cover table

Al Bl Cl D2 El
Al Bl C2 D1 E2
Al B2 Cl D1 El
A2 Bl C2 D1 E2
A2 B2 Cl D2 E2
A2 B2 C2 D2 El

1.3 Orthogonal experiment design method

Orthogonal arrays are beautiful and useful. They
are essential in statistics and they are used in
computer science and cryptography. In statistics, they
are primarily used in designing experiments, which
simply means that they are immensely important in all
areas of human investigation, for example, in medi-
cine, agriculture and manufacturing.

In software testing we can apply the orthogonal
experiment design method. When the classes of
hardware devices are not many and products for each
class are few, configuration testing with orthogonal
experiment design method is very practical and
reasonable. For the configuration testing of SUT, we
can give a test suite by the orthogonal array L, 2%)
(see Tab.4).

Tab4 L,(2°)

Al Bl Cl D1 El
Al Bl C2 D2 E2
Al B2 Cl D2 El
Al B2 C2 D1 E2
A2 Bl Cl D2 E2
A2 Bl C2 D1 El
A2 B2 Cl D1 E2
A2 B2 C2 D2 El

The test suite generated by Tab.4 can cover all
the pairwise combinations, but its size is larger than
the suite for pairwise testing. In software testing, many
gains have been obtained through the use of the

orthogonal experiment design method” """

1.4 Uniform design method

The uniform design method is presented by
Chinese mathematicians Fang and Wang in 19782,
This method can cover all the parameter values,
synchronously all the points for the experiments

28 Nie Changhai, and Xu Baowen

distribute uniformly in the whole experiment space. It
has been widely used and has yielded a great harvest.
Next we design the test suite for the software
configuration testing of SUT using this approach.

For the test requirement of SUT described in Tab.
1, there doesn’t exist a proper uniform design table. In
this case, we can choose a related uniform design
table, like U; (6°)"’, and obtain Tab. 5 for
configuration testing with a good degree of
uniformity.

Tab.5 Test suite for SUT by uniform design

Al(l) BI(1) cl(1) D2Q2) E2()
AlL() B2(2) 20) DI(1) EL(1)
AL() B2(2) cl(1) D2Q) EL(1)
A20) BI(1) 20) DI(1) E2Q)
A2Q) BI(1) cl(1) D2Q) B2Q2)
A2Q) B2Q2) Q) DI1(1) E1(1)

1.5 Multiple factor combinations cover method

For some important software, configuration
testing must be done sufficiently. Though it is
scientific and has good quality to test the software by
the use of the above methods, there still exists too
much risk associated with incomplete testing. To
decrease this risk to the greatest extent possible, we
can design the test suite for configuration testing by
the use of a multiple factor combinations cover
method, such as the 3-way combination cover method,
4-way combination cover method, and so on.

For example, we can design a 3-way combination
cover table and a 4-way combination cover table
according to Tab.1 of SUT. It requires 8 test cases
when we use a 3-way combination cover method, and
16 test cases when we use a 4-way combination cover
method. The test suite generated by these methods are
much more smaller than the suite needed by
exhaustive testing (in this example 32 test cases are
needed for exhaustive testing). Thus multiple factor
combinations cover method can greatly decrease the
risk of incomplete testing, and at the same time it can

also decrease the cost of software testing.
2 Simple Factor Cover Method

In software configuration testing, there is a large
number of hardware device classes and different types
of products to be tested. We present a new method for
configuration testing called “the simple factor cover
method” which can cover all the factors and can
cover pairwise combinations to the greatest degree.

The first step of the test cases generation method
for the simple factor cover method is to rank the
parameters in descending order of the number of
values, then generate test cases by this order. For SUT
we can suppose a, = a, = **- = a,, without loss of
generality. It first generates a, m-tuples. In each of the
m-tuples the first element is one of the a; symbols
from set 7. Then place each of a, symbols in 7T, in
the second position in each of the a,m-tuples,
respectively. If a, > a,, there are still (a, — a,) m-
tuples in the a, m-tuples in which the second position
is still empty. Select a symbol from 7', and fill it in the
second position in one of the remaining (a, — a,) m-
tuples so that it can cover the missing pairs to the
greatest degree. Repeating the process, until all the
empty positions are full, we can get a simple factor
cover table.

This method has two good properties: the size of
the test suite it generates is m = max (a;); the test

l<isn
suite can also cover all the values of the parameters,
and it can cover the pairwise combination to the grea-
test degree. So this method is different from the meth-
od that only covers all the parameter values'”’.

The simple factor cover method requires the
smallest test suite of all the experiment design
methods. It is very applicable to configuration testing
where the number of parameter values and parameters
is large, and the number of the values for each
parameter is different. This method can be an
improvement and complement to the other methods.
Tab.6 is the simple factor cover table for the example

in Tab.1.
Tab.6 Test suite for SUT by simple factor cover method

Al Bl Cl D1 El
A2 B2 2 D2 B2

3 Comparison of Methods

For the convenience of making some comparison
of methods, we can denote multiple single factor
experiment as M1, pairwise combination cover method
as M2, orthogonal experiment design method as M3,
uniform design method as M4, multiple factor
combination cover method as M5 and the simple
factor cover method as M6. T(Mi) represents the size
of the test suite generated by the method Mi; C(Mi)
represents the combination coverage of the method

M.

Generating test cases for software configuration testing 29

For the size of each test suite, there is generally
such a result: T(M6)<T(MA)<T(M1) <T(M3)<T
(M2)<T(MS5). Correspondingly the result with respect
to combination coverage is as follows: C(M6)< C(M4)
sCM)=CM3)sCM2)< C(M)).

The uniform design method is based on the
uniform design table. Although the construction
method has been given, there is usually not a suitable
table for application, and only through the use of the
related uniform design table to design experiments, for
the example in 1.4. As there is no order relation
between the values of each parameter in the
configuration testing, from this sense, the merits of the
uniform design method cannot be embodied
sufficiently.

Orthogonal experiment design method is an
efficient test cases generation method, but it is
dependent on the construction of an orthogonal array.
There are still many remaining problems in this area,
and in software testing we only need cover each pair
of arbitrary two parameters once, and need not cover
the pairs the same number of times. In configuration
testing, the test suite generated by this method is
usually still very large and thus impractical for testing.

The multiple single factor experiment method is a
very easy and practical method, but it is not applicable
to configuration testing in which there are many
parameters and each of them has many parameter
values. In these cases, the test suite generated by this
method is not of good quality.
factor cover

The simple method, pairwise

combination cover method and multiple factor
combination cover method are of a kind of test
generation method, which are suitable for software
testing. In fact we can see that simple factor cover
method has evolved from uniform design method, and
pairwise combination cover method has evolved from
orthogonal experiment design method. These two
methods are more practical for configuration testing.
method

provides a further way to decrease the risk caused by

The multiple factor combination cover

incomplete testing. People can choose a proper n-way
cover table according to the importance and testing
requirements of the software under testing.

4 Conclusion

Test case selection and design play a key role in
software testing, and determine directly the quality,

efficiency, and cost of software testing. This paper
presents some methods for test suite generation of
configuration testing that can be used in various cases
according to various requirements. They can also be
used to complement each other. These methods are
software

also very wuseful in other areas of

testing'® "

, such as black box testing based on
interface parameters, and web testing, etc. We have
developed a series of tools to support these methods
for test suite generation that can greatly improve the

efficiency of software testing.

References

[1] Patton Ron. Software testing [M]. Indianapolis: Sams
Publishing, 2001.

[2] Cohen D M, Dalal S R, Fredman M L, et al. The AETG
system: an approach to testing based on combinatorial
design [J]. IEEE Trans on Software Engineering, 1997,
23(7): 437 —444.

[3] Cohen D M, Dalal S R, Parelius J, et al. The combinatorial
design approach to automatic test generation [J]. IEEE
Software, 1996, 13(5): 83 —87.

[4] Lei Y, Tai K C. In_parameter oder: a test generation
strategy for pairwise testing [R]. Technical Report TR-
2001-03. Raleigh, North Carolina:
Computer Science, North Carolina State University, 2001.

Department of

[5] Tai K C, Lei Y. A test generation strategy for pairwise
testing [J].IEEE Trans on Sofiware Engineering, 2002,
28(1): 109 — 111.

[6] Kobayashi N, Tsuchiya T, Kikuno T. A new method for
constructing pairwise covering designs for software
testing [J]. Information Processing Letters,2002, 81(2):
85 -91.

[7] Heller E. Using design of experiment structures to
generate test cases [A]. In: Proc 12th Int’l Conf Testing
Computer Software, ACM [C]. New York, 1995.33 —41.

[8] Mandl R. Orthogonal Latin squares: an application of
experimental design to compiler testing [T].
Communications of the ACM, 1985,28(10): 1054 —1058.

[9] Brownlie R, Prowse J, Phadke M. Robust testing of AT&T
PMX/StarMail using OATS [J]. AT&T Technical
Journal, 1992, 71(3): 41 —47.

[10] Cohen DM, Fredman M L. New techniques for
designing qualitatively independent systems [J]. J
Combin Designs, 1998, 6(6): 411 —416.

[11] Williams A W, Probert R L. A practical strategy for
testing pairwise coverage of network interfaces [AJ. In:
Proc 7th International Symp Software Reliability
Engineer [C]. 1997. 246 —254.

[12] Fang K T, Wang Y. Number-theoretic methods in
statistics [M]. London: Chapman & Hall, 1993.

30

Nie Changhai, and Xu Baowen

2R 14 e & s By U9 B4 A X
%L_Kj’/g:lﬂ /f%iil,ZJA
(AARFHANAFE TEZ, BT 210096)
C BBAHE K EMNER, Kb 410073)

C TR AR B RIT, 1% 210096)
¢ RXKFHEMHIRERELERE, &7 210096)

WE: ALREAN S RER Z R ERXE XA 4% 5% R 5 kA %46 8 &K =
A MK, ARRF MRS TIALERR MR E EEAHIBET, oM IR T X7 ke b £
o ek AR A R AR E T ERREER R R T EORE MR SR ENSREE T &
R AR R R A MK R 6 R, FF3R — AR KB Sk, o BT AT AR e KA
Vo, EREZRINGZARFORN, RTRSHEZEZENEFEGFHHEES. RG, AT L] X338+
PR R KR R AL B 2R TARS T @t T .

KGR Bl aK; B B oaaR; MR A AA B E

FE SRS TP311

