Journal of Southeast University (English Edition)

Vol.20 No.l Mar. 2004

ISSN 1003—7985

Design and implementation of a new special storage server

Han Dezhi

Xie Changsheng

Fu Xianglin ~ Liu Chun

(School of Computer Science, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract: To improve /0 speed and system performance for network storage devices, we have designed a new
special storage server that is an iSCSI-based network-attached storage server (iSCSI-based network-attached
storge server, for short iNAS). Firstly, the iNAS can provide both the file I/O and the block 170 services by
an iSCSI module, and it converges with the NAS and the SAN (storage area network). Secondly, the iNAS
greatly improves the 170 speed by the direct data access (zero copy) between the RAID (redundant array of
inexpensive disks) controller and the user-level memory. Thirdly, the iNAS integrates the multi-RAID for a

single storage pool by a multi-stage stripping device driver, and it implements the storage virtualization. In the
experiments, the iNAS has ultra-high-throughput for both the file I/0 requests and the block 1/0 requests.
Key words: network-attached storage; storage area network;iSCSI; zero copy; multi-stage stripping; Linux file

system

With the digital information network increasing
at a tremendous speed, more and more efforts have
been made to improve the traditional network-attached
storage (NAS). The Storage Networking Industry
Association (SNIA) Technical Dictionary defines
NAS as: a term used to refer to storage elements that
connect to a network and provide file access services
to computer systems. In common usage, an NAS
system is a special-purpose device designed to serve
files to clients over a LAN. There are many
advantages in the architecture, such as sharing files
under a hetero-architecture, making use of the existing
LAN architecture, easy installation, operation and
management, PNP, good connection compatibility and
network adaptation, low costs and so on'",

Nevertheless, in applications, there are some
disadvantages to the NAS device.(D The NAS device
does not support the block 170 protocol except for the
network file system (NFS) and the common Internet
file system (CIFS)"'', and the access for the block /O
user is limited. @ In accessing speed, when the NAS
reads some data, firstly, the data is transferred between
various 1/0 devices and the kernel-level buffer cache
by the DMA (direct memory access),then the kernel-
level buffer cache is used as a temporary buffer cache
that is always mapped into the physical memory. The
data transfer between the kernel-level buffer cache
and the user-level memory are executed by the CPU’s
memory-to-memory copy. When any data are written,

Received 2003-07-10.

Foundation items: The National Natural Science Foundation of China
(No0.60173043) and the State Key Basic Research and Plan Program
(973 Program) (No.G1999033006).

Biographies: Han Dezhi (1966—), male, graduate; Xie Changsheng
(corresponding author), male, doctor, professor, ccsxie@263.net.

they go through a reverse process. In this case, the 1/
O performance is limited by the speed of the memory-
to-memory copy:ﬂ. (3 Regarding data backup, the
data transfer in the NAS system would engross so
much of the LAN bandwidth that precious network
resources may be wasted. Sometimes this status influ-
ences users’ applications. With respect to resources
integration and the NAS system management, the NAS
can only integrate the disk resources in a single NAS
device, and cannot span different NAS devices. So it is
difficult to converge several different NAS devices to
a large NAS device; the system has to manage those
devices individually.

To improve the situation, this paper describes an
NAS server system based on the iSCSI protocol
(iSCSI-based NAS server, for short iNAS).

1 Design Mechanism

This paper proposes three mechanisms to solve
the problems of the common NAS. One is a zero copy
mechanism to realize direct data transfer between the
RAID controller and the user-level memory; the
second provides the block 1/0 service and the file I/
O service at the same time by an iSCSI module; the
third realizes storage virtualization by an MSS (multi-
stage stripping) device driver.

1.1 Design strategy

The design strategy in our system is described as
follows.

1) The iNAS can offer block 170 services by the
iSCSI modular including a client iSCSI module and a
server iSCSI module™’.

2) The direct data transfer between the RAID

Design and implementation of a new special storage server 37

controller and the wuser memory should be
implemented, instead of the buffer cache. It improves
the file 170 speed of the iNAS system with the zero
copy techniquem.

3) By developing a multi-stage stripping device
driver, the iNAS can be mounted to the multi-RAID
simultaneously, and the multi-RAID can be virtualized
at high-speed large RAID'™**’ .

4) To improve the read/write performance of the
disk, a disk fragment clear-up program has been
developed. When the system isn’'t working, this
program can clear up the whole disk and try to store
the blocks of each file in a contiguous disk block'®’.

5) We have revised the Linux system and kept its
network and storage functions and some hardware
concerned. So the iNAS is a black casket from its out-
side.

1.2 Operational system choice

Because source codes for the Linux are open to
all users, we may modify them according to our
requirements. To reduce the system run overhead, on
the one hand, we have simplified the file system, the
network protocol, and the system services, etc; on the
other hand, we have appended our product with a
high-speed cache, an intelligent pre-fetch, a load
balance, and a distributing file system, etc., so the
performance of the system is greatly improved and a
storage-oriented and embedded system integrating
many new techniques is achieved.

The Linux uses the kernel-level buffer cache
mechanism as the PC-Unix "’ , which mediates the data
transfer between the disk 170 system and the user’s
process. The kernel-level buffer cache is always used,
because the Linux has two process modes, i.e., the
kernel mode and the user mode. In data transfer
between various 1/O devices and the kernel-level
buffer cache by the DMA, the kernel-level buffer
cache is used as a temporary buffer that is always
mapped into the physical memory. The data transfer
between the kernel-level buffer cache and the user-
level memory is executed by the CPU’s memory-to-
memory copy. The reason for this transfer sequence is
that the user’s memory might be in the “exchange”
state. Although the data transfer between the kernel-
level buffer cache and the 170 devices is by the DMA,
the DMA is transferred between the physical memory
areas. And the data transfer between the kernel-level
buffer cache and the user-level memory is executed as
a software process, which is a data transfer between
virtual memories. The memory-to-memory copy would
limit the 170 performance of the system. To solve this
problem, we have introduced the =zero copy

. 2
mechanism'%’ .

1.3 iSCSI protocol

The iSCSI protocol defines a mapping from the
SCSI to the TCP/IP; namely it packs the host SCSI
commands to the IP packets and transports them over
the IP network ®'. When the packets arrive at the
destination node, they revert to the SCSI commands,
consequently, a direct and transparent transport
process for the SCSI command over the IP network is
realized. It integrates the SCSI and the TCP/IP
protocols, and realizes a non-slot connection with the
storage system and the network.

Nowadays there are three ways to realize
iSCSI'”). The iNAS implements the iSCSI function by
the pure software. The iSCSI software modular
includes the initiator modular, which is located at the
client, and the target modular, which is located at the
server. Both of them are loaded to the OS as kernel
state drivers. The initiator is responsible for intercep-
ting and capturing the /O requirements handed down
by the file system, and transforms them into the iSCSI
data units, then sends them via the network interface
card. The target is responsible for resuming the SCSI
commands and delivers them to the SCSI device
according to the information of the iSCSI protocol
data units. After loading the initiator modular at the
client, there will appear a device named/dev/sd * ,
which can be directly mounted to the system.

1.4 Zero copy mechanism

The conventional and proposed processing stacks
are shown in Fig. 1, and the traditional read
information transfer flows are shown in Fig. 1 (a).
When data and commands are transported between the
RAID controller memory and the user memory, the
kernel-level buffer cache acts as a temporary buffer
cache. Reading proceeds in two steps: the DMA
transfer from the RAID controller to the kernel-level
buffer cache, and the memory-to-memory copy from
the kernel-level buffer cache to the user-level
memory.

As for the proposed processing stack, see Fig. |
(b). To avoid using the buffer cache, a new data flow
and a command flow are established in both the Linux
and the device driver. In this way, the LFS (Linux file
system) can directly access the device driver via the
zero copy entry, and send read/write commands,
including the initial sector number, the sector count
and the virtual memory addresses (user memory
addresses). We call the command request and the data
transfer via this flow the zero copy mechanism.

38 Han Dezhi, Xie Changsheng, Fu Xianglin, and Liu Chun

Command flow
Data flow

Destination buﬂelr

T
,
’ User’ s process

Read()

Virtual file
system (VFS)
A]

Linux file system
(LFS)

Bllefer cache

SESI driver

L]
Device driver (DD)

¥

[\
I RAID controllers }—g

O 0o O O
O O O

(a)

Destination buffer

,
User’ s process

Read() Zero-copy to user’s
VIS destination_buffer
LFS | Read/write requests
.!
Buffer Gathering
Cﬁc}le. contiguous Zero-copy
§ blocks V' entry

SCSI. driver

MSS © device driver

| RAID controllers

O O O O

O O O

(b)

Fig.1 Traditional file server stack and newly-designed special storage server stack. (a) Traditional file server

stack; (b) Newly-designed special storage server stack

In the iNAS, when the LFS receives a read/write
request, in case it is a file request, the server will find
out the distributed blocks and combine all adjacent
blocks together as a large block, then transport it
directly between the user memory and the RAID 1/0.
If the LFS receives an iSCSI block request, because
the iSCSI protocol does not support the zero copy, the
data are transmitted by the conventional flow via the
buffer cache. For other file operations, such as
creating a directory or accessing the disk information,
the conventional flow via the buffer cache is used.

1.5 Multi-stage stripping device driver

In the proposed system, the Linux device driver
for the RAID controller PCI cards has two special
functions. One is the storage virtualization function,
offering an access to two or more RAID controllers,
and constructs a large MSS RAID device with high-
speed performance. The other is the zero copy
mechanism.

In the zero copy mechanism, the LFS directly
sends the read/write command to the MSS device
driver. The command includes the buffer cache
address, in addition to the starting sector number and
the number of sectors. The device driver should
convert the address from virtual form to physical one,
confirming that the page tables are contiguous or not
and scattering contiguous pages and command request
to the RAID controllers with a chaining DMA function
to reduce the overhead of the scattering pages.

Although the iSCSI protocol doesn’t support the
zero copy and the block 1/0 client can only use the
MSS functions, the iSCSI is better than the traditional

file transfer protocol in terms of flow and congestion
control, discovery = mechanism, timeout and
retranslation, etc., and it can respond to the block 170
requests of clients rapidly.

1.6 Disk fragment clear-up program

To enhance the iNAS performance, reading or
writing a file would run best when it is in contiguous
disk blocks. So we develop a program to clear up disk
fragment on schedule to assure that the blocks of a
file can be stored at contiguous sectors.

2 Prototype System
2.1 Hardware

The specifications for the iNAS prototype are
shown in Tab. 1. It has a 1 GB memory, 3 RAID
controllers, each of which has two hard disks, a
Pentium 4 (1 500 MHz) CPU, Redhat version 7.1 used
as the Linux. In the Elstorage-2000, there is an RAID
control card with two SCSI hard disk interfaces, which
is developed by Elstorage Corporation and our
laboratory together.

Tab.1

Processor

iNAS hardware configuration
Pentium 4, 1 500 MHz
1 GB interleaved EDO-DRAM

Host memory

PCI buses 2 PCI buses with 3 slots each
RAID controllers Elstorage-2000
RAID level RAIDO, RAIDI and RAIDS supported
#Controllers 3
Hard drive IBM 60 GB
#Drives 6 (2 drives at each controller)
oS Linux 7.1

Design and implementation of a new special storage server

39

2.2 Software architecture

The iNAS client software architecture is shown in
Fig.2. When the iNAS offers the block 170 services, it
uses the iSCSI technology, as shown in Fig.2 (client
1). Concrete data read/write flow is: (D The block I/O
commands (SCSI commands) sent by the application
in client 1 are encapsulated to the IP data packets via
the iSCSI device driver and the TCP/IP protocol stack,
then transferred over the IP network; @ When the
encapsulated packets arrive at the iNAS, they are
restored to the original SCSI commands via an
unpacking process, then the iNAS sends these SCSI
commands to the storage device as the block read/
write requests; (3 Those needed data blocks return to
the iNAS from the RAID; @ Data blocks are
encapsulated by the TCP/IP protocol stack in the
INAS, and transmitted to the client 1 over the IP
network, then the data blocks are unpacked and

assembled for a file in the client 1 file system.
iNAS

Client 1 Client 2

Application layer

Block (l/ 0) File(I/O) (for management and storage)
Application layer || Application layer Linux operation system
0S(file system) ‘ 0S(file system) ‘ T T T 1
Volume manager || /0 rediretor !\JFS/I/ v SCSIT | Opﬁmi'ﬁm !
iSCSI layer | NFS/CIFS ICIFS llayer] Scst A syl's‘:em l

. i pr— \

iSCSI layer rceap || Tepap 1] YT+ IV,

I Hh K : f

TCP/TP NIC i ' NiC || MSS device

! — ||] driveri |
NIC i L= :

0 |

e —1 RAID controller

Fig.2 Communications software architecture of the iNAS
and the client

When the iNAS offers the file 170 services, as
shown in Fig.2 (client 2), the read/write process is as
follows: (D The client 2 sends the file read/write
requests to the iNAS (its working manner is the same
way as that of the traditional NAS); 2 The file read/
write requests are converted to the block 170 requests
by the iNAS file system, then transmitted to the RAID
controller by an MSS driver; 3 The RAID controller
directly sends corresponding data blocks to the user
memory by the zero copy; @ The data blocks are

assembled to files by the INAS file system, then the
iNAS transfers the file to the client 2 via the network.
In this case, the iNAS is connected with the network
in the NAS way, working the same way as the
traditional NAS, thus it has such advantages as those
of the traditional NAS and can allow users to access
the hetero-architecture files and share them. Via the IP
network, it can make full use of the existing network
and has good connectivity, adapting to a complicated
network environment. On the other hand, the iNAS
supports the iSCSI block 170 protocol. So it has high
scalability (we can put many iNAS devices in a local
network) and high availability by RAID, and it can
centralize uniform storage resources and manage them,
i.e., merge the multi-iNAS devices to a large uniform
iNAS device.

3 Experimental Results

For storage networks, the most
performance parameters are average response time and
network throughput. In this paper we use them to
evaluate the iNAS. Average response time is the
average time elapsed since the /O requests are sent
by the initial device until the 1/O operations are
finished by the target device and the finishing
message is sent back to the initial device by the target
device. Throughput is the maximum amount of /0
request processed by the storage subsystem per time
unit. The average response time and throughput can
be measured from different views, for example, the
user, OS, and disk controller and so on. For simplicity,
in our experiments, the two parameters are measured
in terms of the OS of the server.

important

3.1 Methodology

To test the iNAS performance, we have carefully
designed two groups of experimental environments.
Fig.3 gives a highly simplified structure of the experi-
ments; two groups of experimental configurations are
shown in Tab.2. Host 1 is a block 170 request client,
host 2 is a file 170 request client. The iNAS is a
special storage server that we designed.

Tab.2 Configuration of experimental machine

Device CPU Memory oS Hard disk NIC/HBA

Host 1 Pentium 3, 730 MHz 256 MB Linux 7.1 ST318437LW (SCSI) AGE-1000SX (NIC)
Host 2 Pentium 3, 730 MHz 256 MB Linux 7.1 Maxtor 91020D6 (IDE) AGE-1000SX (NIC)
iNAS Pentium 4, 1 500 MHz 1 GB Linux 7.1 IBM 60 GB AGE-1000SX (NIC)

The block I/0 experiment is shown in Fig.3(a);
the user can send the block /O request from host
1 to the iNAS wvia the iSCSI modular. The file

1/0 experiment is shown in Fig.3 (b); the user can
send the file 170 request from host 2 to the iNAS via
the NFS.

40 Han Dezhi, Xie Changsheng, Fu Xianglin, and Liu Chun

Disk

(b)

Fig. 3 Experimental configuration. (a) The block /O
experiment; (b) The file I/O experiment

In the experimental environments described in
Fig.3, we have done three groups of experiments to
measure the iNAS performance. The block /0O per-
formance is tested via Fig.3(a) by the 10 meter in the
first experiment; the file I/O performance is tested via
Fig.3(b) by the 10 meter in the second; in the third,

the performance of the iNAS file system is tested by a
benchmark program that we designed.

3.2 Results and discussions

The testing results for the block 1/0 request and
the file 170 request are shown in Tab.3. Fig.4 shows
the effect of the file/block size on the throughput and
the mean response time. As shown in Fig.4(a) and Fig.
4 (b), when the file/block size is increased, the
throughput (MB/s) is increased, but the throughput
(10/s) is decreased. Most importantly, the throughput
of the block 170 is bigger than that of the file I/O. As
observed in Fig. 4 (c¢), when the file/block size is
increased, the mean response time is increased. As
shown in Fig.4, there is no performance difference
between the block /O requests and the file 1/0
requests, when the block /O requests are processed
by the iSCSI module and the file requests are
processed by the optimized file system.

Tab.3 Experimental results

Throughput/(I0 * s ")

Throughput/(MB + s) Average response time/ms

File, block size/KB

File Block File Block File Block
1 1253.3162 1 539.891 1.223 94 1.503 81 3.981 48 3.643 28
2 1153.5375 1385.011 2.253 00 2.70523 3.853 84 3.739 62
4 1099.799 1202.381 4.296 0 4.696 81 4.474 65 4.246 59
8 806.671 4 941.427 2 6.302 1 7.35429 4.868 74 4.704 26
16 459.650 3 583.033 6 7.1820 9.140 99 5.602 83 5.401 48
32 351.3856 380.1472 10.980 8 11.879 46 6.83274 6.501 05
64 234.016 6 254.009 6 14.626 0 15.875 56 8.538 46 8.058 08
128 147.821 23 150.270 4 18.477 6 18.783 78 11.432 94 10.214 78
256 96.777 41 101.103 2 24.194 35 25.275 88 15.562 35 13.053 59
512 56.225 03 57.742 8 28.112 51 28.871 54 19.947 623 17.902 52
1024 30.007 99 31.8124 30.007 99 31.81239 33.342 89 30.814 66

We evaluate the performance of the Linux with
proposed mechanisms, zero copy and storage
virtualization by a benchmark program design of ours.
The purpose of this evaluation is to confirm the
performance degradation in the file system by
comparison with the non-optimization file system
performance shown in Fig.5. The benchmark program
is used to measure sustained sequential file read
speeds. The time used for reading files at a total size
of 400 MB was measured. For example, when the read
speed of a 10 MB file was measured, forty 10 MB files
were prepared, the read system for all entire files was
issued, and the read speed was calculated from the
moment the read began. In order to evaluate the
performance under practical conditions, the clear-up
program was not used. The sustained sequential file
write speeds were measured by similar procedures.

In order to raise efficiency the Linux parameters

of block size, fragment size and cylinder group size
were 64, 64 and 1 024 KB, respectively. Fig.5 (a)
shows the measured performance of file read speeds in
the proposed Linux for the iNAS. In the measure, the
file size was changed from 64 KB to 100 MB. The
performance of file read speeds in the conventional
Linux is also plotted in Fig.5(a). In the conventional
Linux, the iNAS performance is saturated at about 21
MB/s, because of the overhead of the memory-to-
memory copy performance in the buffer cache. On the
other hand, the optimized Linux obviously overcomes
the bottleneck, and the sustained sequential file read
speed exceeds 80 MB/s when the file size exceeds
100 MB.

Next, the performance of the sustained sequential
file write speed for the iNAS is shown in Fig.5(b). It
shows that the proposed mechanisms can reduce the
bottleneck and speed up to 30 MB/s. On the other

Design and implementation of a new special storage server 41

18001
» 1400 F
=]
E 1000 —&— File I/0
=N
= 6ol —m— Block /0
é 200+
1 1
1 4 16 64 256 1024
File, block size/kB
(a)
351
= 30f
a 25+
§ 20+ —e—File 1/0
% 15| —#—Block /O
=
T 10
= 5
1 1 1 1
1 4 16 64 256 1024
File, block size/kB
(b)
}E) 40
£ 30
2 —e— File /O
% —— Block I/0
£ 10
% 0 1 1]
= 1 4 16 64 256 1024

File, block size/kB
(c)

Fig.4 The curves of mean-response time and throughput
vs. file/block size

90 - —e— Optimization

70 —1l— Non-optimization

Sequential read/
w
S

(MB-s~1)
_
o O

File size/MB
(a)
35 [—e— Optimization
- —i— Non-optimization

Sequential write/(MB+s~!)

File size/MB
(b)

Fig.5 The curves of read/write performance test in server
system. (a) iNAS read performance; (b) iNAS write performance

hand, the conventional Linux only provides saturated
performance up to about 7 MB.

4 Conclusion

The development of network technology requires

bulky and high 170 speed storage devices. Although
the traditional NAS has many advantages with respect
to file sharing and low price, it only supports the file
I/0 protocol and has many problems in terms of
accessing speed, merging and managing resources.
The SAN has many virtues, such as high performance,
high response speed, high availability, easy-to-merge
resources and centralized management resources, etc.,
but it doesn’t support the file I/O protocol; thus it is
very difficult to construct, to maintain and to manage.
So the SAN is only suitable for wealthy enterprises,
not ordinary ones. First, with the iSCSI module, the
iNAS can provide the file 17O service and the block
170 service simultaneously; the iNAS has merits of
both traditional NAS and SAN. We can connect
multiple iNAS with the IP protocol to build up a large
storage network and it can be managed in a manner
resembling that of the SAN. Therefore the iNAS
converges the NAS and the SAN, and will prove to be
very attractive to many medium-sized or small
enterprises. Second, with an optimized system, the
iNAS can adapt to high-speed networks. The
experimental results show that high-speed sustained
sequential read performance exceeding 80 MB/s has
been achieved.

At present, the RAID in the iNAS sample is
RAIDO. In the future works, first, we will alter RAIDO
with RAID1 and RAIDS, respectively, and enumerate
their performance analysis. Second, we will connect
multiple iNAS to construct a large storage pool via the
IP protocol, and evaluate the performance of the
whole storage pool.

References

[1] Marc F. Building storage networks [M]. New York:
McGraw-Hill Companies, 2000. 205 —300.

[2] Thadani M, Yousef A K. An efficient zero-copy 1/0,
framework for UNIX [EB/OL]. http: //www.
sunmicrosystem. com. 2001/2003-06.

[3] Satran J. iSCSI[EB/OL]. http: //search.ietf.org/internet-
drafts/ draft-ietf-ips-iscsi-09.txt. 2001/2003-05.

[4] Kanada T, Onoda T, Yamashita I, et al. Netwarp: an ultra-
high-throughput computer communications service [J].
Network, IEEE Magazine, 1997, 11(1): 44 —50.

[5] Tsujioka T, Onoda T. An ultra high-speed file server with
105 MB/s read performance based on a personal
computer [J].Communication, IECICE Trans, 1998, 81
(12): 2503 — 2508.

[6] Brustoloni J C, Steenkiste P. Effects of buffering semantics
on 1/0 performance [A]. In: Proc 1996 USENIX
Technical Conference [C]. San Diego, 1996. 277 —291.

[7] SNIA. iSCSI for storage networking [EB/OL]. http://
www.snia.org, 2001.

42

Han Dezhi, Xie Changsheng, Fu Xianglin, and Liu Chun

—MFNERAFEERSSNIZITS SN
HEE kA MRk 3 A

(4 P A K FH FAF IR, KX 430074)

WE: A7 R RNAAHEEEN VO REZRGEMR, T T —F#HeE RN AEHIRES S, 2RS35
S —FF K T iSCSI &9 B W 71 Bk %- % (iSCSl-based network-attached storage server, iNAS). /£ iNAS
W, F) B iSCSI 2R 424k 69 A2 3k, 4% 43 INAS [B 32 4% file 1/0 #= block 1/0 JR 4, %I T NAS Fe
SAN (storage area network)#d @k 4-; i it £ RAID (redundant array of inexpensive disks)¥% 4] %5 4= A 7
N AZ 0 AR (EHN), MRHIEZ T INAS 69 1/0 s pik i @i — A S R 5 maw
RIS AZ T, ¥ % A RAID & — a9 A4k, i FILT B4 I 4k, 52 30 25 R 277, iNAS x¢
A 1/O 3 K Ae e 170 i RAREA AL 3 89 v oL 3% 2

KBRIA: W AGE; AhE R SCSE; RH L % K 4R Linux X7 4%

HE 5 3ES: TP303

