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Abstract: In this paper neural network partial least square (NNPLS) was used to establish a robust reaction
model for a multi-component catalyst of methane oxidative coupling. The details, including the learning

algorithm, the number of hidden units of the inner network, activation function, initialization of the network

weights and the principal components, are discussed. The results show that the structural organizations of
inner neural network are 1-10-5-1, 1-8-4-1, 1-8-5-1, 1-7-4-1, 1-84-1, 1-8-6-1, respectively. The Levenberg-
Marquardt method was used in the learning algorithm, and the central sigmoidal function is the activation

function. Calculation results show that four principal components are convenient in the use of the multi-

component catalyst modeling of methane oxidative coupling. Therefore a robust reaction model expressed by
NNPLS succeeds in correlating the relations between elements in catalyst and catalytic reaction results.
Compared with the direct network modeling, NNPLS model can be adjusted by experimental data conveniently
and the calculation of the model is simpler and faster than that of the direct network model.
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Statistical data analysis is widely applied in
establishing a model from experimental or historical
data. A typical method is the partial least square (PLS)
method, which was proposed by Wold"" to generalize
a robust model. Although the PLS regression method
provides a good remedy for the problems of correlated
inputs and limited observations, its major restriction is
that only linear information can be extracted from
data. On the hand, multi-layer
networks >*'  have been
approximators

other neural

proven as universal
of any continuous function with
arbitrarily desired accuracy'*’. But it should be
pointed out that the number of weights in a multi-
layer network could be larger than the number of
observations in the case of limited data. Therefore,
some of the weights cannot be uniquely determined
from the observed data, and the direct network model
will lead to overfitting. Based on the

consideration, the PLS regression and neural network
[5.6]
2

above

are integrated to formulate an approach (NNPLS)
that can handle nonlinearity, correlated inputs and
limited observations.

In this paper, NNPLS is applied in establishing a
robust model for a multi-component -catalyst of
methane oxidative coupling. The NNPLS model is
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further research of the direct network model for the
computer aided-design catalyst (CADC) method.

1 Catalyst for Methane Oxidative Coupling

In the previous research'”’, a multi-component
catalyst for the oxidative coupling of methane (OCM),
which contained Na, S, W, P, Zr and Mn elements and
supported on SiO,, was introduced, and prepared by
the gelatification-impregnation method. A better
catalyst, which C, hydrocarbon reached 20.77%, was
designed by using direct neural network modeling. In
further researchm, a catalyst, which C, hydrocarbon
reached 27.78%, was designed. 100 catalysts were
studied in those researches, and the experimental data,
including the composition of catalysts and
experimental results, are used in this paper.

2 NNPLS Method
2.1 NNPLS algorithm

Experimental data is divided into two matrices, in
which y, (i =1, 2, .-+, p) are p different quality
indices, and x; (j =1, 2,

variables, and there are n samples of data being
observed. Two data matrices can be expressed as

-, m) are m causal

Xy Xttt Xy,
X = x?l x?z x?p c R
X1 X2 o xnp
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Yu Yz 7 Yim
Y = y?l y?Z y%m < Rnxm
Ynl Y2 e Y o

in which each row is composed of one observation,
and two columns in Y are the conversion of methane
and selectivity of C,, respectively. The data analysis
problem is to relate the matrix ¥ as some function of
the matrix X so as to predict Y using the data of X.

The PLS decomposes matrices X and Y into
bilinear products plus residual matrices:

X=tpl +E, (1)

Y= ulqﬂll- +F, @)
where ¢, u, € R" are score vectors of the first
principal factor; and p, € R", ¢, € R” are loading
vectors corresponding to this factor. All the four
vectors are determined so that the residual matrices E,
and F, are minimized. Formulas (1) and (2) formulate
a PLS outer model.

Since the relations among different components
in the catalyst are very complex and could be high
nonlinear, the score vectors cannot be related by a
linear function or an analytic function. Based on the
nonlinear property of a neural network, the PLS inner
model can be expressed by a neural network as

u, =N(t,) +r, 3)
where N ( - )
represented by a neural network, which is determined
by minimizing the residual r,.

expresses the nonlinear relation

After going through the above calculation, the
residual matrices are calculated as

E, =X-1,p! @)

F, =Y-N(t)q' )
Then the second factor is calculated based on the
residuals E, and F, by going through the same
procedure as the first factor. The same procedure is
repeated until the last factor « is calculated, which
leaves almost no information in the residual matrices
E, and F,.

Based on the above discussion, the robust
reaction model of a multi-component catalyst activity
can be rewritten by iteration as

a

Y = ) ig, +F, ©)

h=1
where #, is expressed by formula (3).

The structure of the NNPLS algorithm is shown
in Fig. 1), where the data is transformed to latent
scores, then neural network is used to learn the scores.

For the 6-component catalyst, m = 6; methane
conversion and C, hydrocarbon selectivity are reaction
performance studied, p = 2; and 100 catalysts and

experimental results are obtained in the previous
research, n =100.

PLS PLS PLS

outer outer outer

model model model
1 r 2| a

The last factor

The 1st factor The 2nd factor

Fig.1 A schematic illustration of the NNPLS method
2.2 Standardization of initial data

In order to be handled conveniently, the initial
experimental data should be standardized. In this
paper, X and Y are scaled to zero-mean.

2.3 Choosing an activation function

In this particular application, the network is used
to simulate the relation between u, and ¢, as shown in
formula (3). It is known that both u, and ¢, have the

following propertyw: :
2 Uy = O (7)
i=1

Zf by =0 @)

where u;; and t,, are the i-th elements of u, and t,,
respectively. Therefore, the following
sigmoidal function is chosen to model the inner
relation because zero input to the sigmoid gives zero
output.

fx) =

centered

1-¢e”

1+e™"

©)

2.4 Choosing a learning algorithm

The neural network used in the NNPLS method
would be based on a back-propagation algorithm.
However, the learning speed of the traditional
gradient-descend method is very slow, compared with
other improved learning algorithms, and that of the
Levenberg-Marquardt algorithm is faster. On the other
hand, the network used for the inner model in NNPLS
is single input and single output (SISO), so the
complexity of calculation is not great. It is convenient
to use the Levenberg-Marquardt method as a learning
algorithm for the NNPLS method.

2.5 The number of hidden layers and hidden units

The numbers of hidden layers and hidden units
are determined by the complexity of input-output
relationship. For the SISO network used in NNPLS, 1
or 2 hidden layer(s) is convenient. But, it should be
stated that adding more hidden units cannot obtain
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better generalization. Therefore, it is important to
properly choose the number of hidden units, which is
determined by a simplified cross-validation method
scheme'*’. The experimental data would be divided
into a training set and a testing set, which can be
expressed as

test test

u, =E,_\w, (10)

6" =F\q, (11)
where

E;ICSI - E;Citl _ t;fstp;{ , E(t)cst - X1CSt (]2)

F;::SI - F;Citl _ N( t;lcst ) qz , F(I)Cst - thst (1 3)

where w,, p,, ¢, have been calculated in the NNPLS
algorithm. The number of hidden units is determined
by the testing results. If the error between the actual
data and predicted data is large enough, more hidden
units should be added.

2.6 Choosing initial weights of the inner network

It is important to choose properly the initial
weights, which have an effect on convergence and
learning speed of the inner network. A usual approach
is to choose the initial weights randomly, but it is not
reliable for training the network. In this paper, a
simple method is introduced to initialize the weights.
u, and ¢, are a correlated linear function:

u,=b,t, +r, (14)
where b, is a coefficient which is determined by
minimizing the residual r,, and calculated by

Then the network which has the same structural
organization is used to simulate formula (14), and
some network weights can be obtained. The weights
would be used as the initial weights for the inner
model of NNPLS.

2.7 Estimation of the number of principal com-

ponents

It is not true that the more principal components
there are, the more accurate the NNPLS model is. Too
many principal components would result in an over-
parameterized model, while too few principal
the  problem.

Therefore, a crossvalidation method is used to estimate

components  under-parameterize
the number of principal components. The experimental
data is divided into g groups; the data in g — 1 groups
is used to found the model, which would be tested by
the additional data every time. Based on the above
method, all data would be predicted, and the root
mean squares errors of the quality matrix are
calculated and used as the proof for estimation of the

number of principal components.
3 Catalyst Modeling

Based on the above consideration, the NNPLS
method is applied in catalyst modeling for methane
oxidative coupling. Principal inner models for catalyst

T . . .
L, (15) modeling are shown in Fig.2.
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Fig.2 Principal inner models in the NNPLS catalytic robust model of OCM
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The structural organizations of six principal
components are 1-10-5-1 (one input unit, 10 first
hidden units, 5 second hidden units, one output unit),
1-8-4-1, 1-8-5-1, 1-74-1, 1-8-4-1 and 1-8-6-1,
respectively.

From Fig.2, by increasing the principal compo-
nents, the accuracy of fitting would be improved,
which also is shown in Fig.3(a). But too many princi-
pal components would lead to overfitting. It can be
found in Fig.3 (b), the prediction errors do not de-
crease with the increase of the principal components,
and the best number of the principal components is 4.
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Fig.3 Cross-validation results in NNPLS method.
(a) Training errors; (b) Prediction errors

Based on the above discussions, the relation

between  catalytic  performance and catalyst
components of catalyst for methane oxidative
coupling can be expressed as
Outer model:
(x,,x,, x,, x,, x;, x, | =TP" +E, =
tpi +6p, +p; +1,p; +E, (16)
[XCH4’ Scz] =UQT +F, =
u,q; +u,q, +u,q; +u,q; +F, (17)

Inner model:
U=N(T) +R = [N1<t| ), Nz<t2) s Ns(t3) s
N, (t,) ] +[r +r,+ry+r,] (18)
where x, to x, are molecular contents of six elements
in catalysts, X, and S, are methane conversion and

C, hydrocarbons selectivity, respectively.

In order to compare with linear PLS regression,
the comparison in performance between NNPLS and
LPLS is shown in Tab.1.

Tab.1 Comparison in performance between NNPLS

and LPLS
F NNPLS LPLS
N lE, B | BB B, B, B B

1 0.0300 0.884 6 2.632 1 3.6489
2 0.0150 0.462 7 1.8734 2.6572
3 0.0100 0.143 5 1.2672 2.0751
4 0.007 5 0.1156 0.973 6 1.6547
5 0.006 0 0.156 8 0.8756 1.596 6
6 0.005 0 0.272 3 0.859 7 1.5957

In Tab.1, |E, -E,| is the modulus of the

training set, and |E* - E*'|| is the modulus of the
testing set. From Tab.1, it is known that NNPLS
succeeds in establishing the catalyst model, which is a
complex nonlinear input-output relationship, and
cannot be explained simply by linear PLS regression.

Compared with the direct network model of
multi-component catalyst, which will be discussed in
another paper, the NNPLS model can be conveniently
adjusted by experimental data and the calculation of
the model is simpler and faster than that of the direct
network model.

4 Conclusion

In this paper, NNPLS is used to establish a robust
reaction model for a multi-component catalyst of
methane oxidative coupling. The details, including the
learning algorithm, the number of hidden units of the
inner network, activation function, initialization of the
network weights and the principal components, are
show that the structural
organizations of the inner neural network are 1-10-5-
1, 1-8-4-1, 1-8-5-1, 1-7-4-1, 1-84-1, 1-8-6-1,
respectively. The Levenberg-Marquardt method is
used as the learning algorithm, and the central
sigmoidal function is the activation function.
Calculation results show that four principal
components are convenient for the multi-component

discussed. The results

catalyst modeling of methane oxidative coupling.
Therefore a robust reaction model expressed by
NNPLS succeeds in correlating the relations between
elements in the catalyst and catalytic reaction results.
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