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Fuzzy programming approach solution
for multi-objective solid transportation problem
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Abstract: Based on recent research developments in multi-objective solid transportation problem (MOSTP),
this paper presents a fuzzy programming approach to determine the optimal compromise solution of MOSTP.
The characteristic feature of the proposed approach is that various objectives are synthetically considered with

marginal evaluation for individual objectives and global evaluation for all objectives. The decision-maker’s
preference is taken into account by his/her assigning weights to the objectives. With global evaluation for all
objectives, a compromise programming model is formulated. As a generic aggregation operator is adopted,
several solution methods proposed earlier become special cases of this approach, and the solution process also
becomes more flexible and realistic. An illustrative numerical example is provided to demonstrate the

approach.
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The classical transportation problem (TP) refers
to a special class of linear programming problems,
which was originally developed by Hitchcock'". In a
typical problem a product is to be transported from m
sources to n destinations. A variety of approaches
have been developed by many authors'>™*' for the
linear multi-objective trans-portation problem (MOTP).
Current, et al.””' have done a review work about the
multi-objective design of transportation networks.

The solid transportation problem (STP) is a
generalization of the classical transportation problem.
An extension of the classical transportation problem to
the solid transportation problem was stated by Schell.
The necessity of considering this special type of
transportation problem arises because many industrial
problems are shaped in this special form. The STP can
be converted to a classical transportation problem by
considering a single type of conveyance. Haley[(’:
described the
transportation problem. His method of solution is an

solution procedure of a solid
extension of the modified distribution method. He
presented a comparison of the solid transportation
problem and the classical transportation problem. He
discussed the degeneracy case in STP. He also defined
the multi-index transportation problem and presented
multi-index

the solution procedure for the

transportation problem.
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Fuzzy set theory was proposed by Zadeh'”' and
has been found to be extensive in various fields. Bit,

89]

et al."*) advocated the application of Zimmermann’s

fuzzy programming“oi and presented an additive
fuzzy programming model for the multi-objective
solid transportation problem (MOSTP)'"'. The most
important aspect in the fuzzy approach is the
compensatory or non-compensatory nature of the

L2214 have

aggregate operator. Several investigators
discussed this aspect. Due to the ease of computation,
the most frequently used aggregation operator in
Zimmermann’s fuzzy programming approach is the
“min” operator which has also been employed by Bit,
et al.'™®". The biggest disadvantage of the aggregation
operator “min” is that it is non-compensatory in the
sense of Yager:m . In other words, the results obtained
by the “min” operator represent the worst situation
and cannot be compensated by other members which
may be very good. Lee, et al.l'" pointed out that the
aggregation operator “min” didn’t guarantee non-
dominated  solutions  for  multiple  objective
programming problems.

To overcome the drawbacks mentioned above, we
propose a fuzzy compromise programming approach
to MOSTP. In the fuzzy compromise programming
various

approach  proposed,

synthetically considered by marginally evaluating

objectives  are

individual objectives and globally evaluating all
objectives. The decision-makers’ preferences among
the objectives are reflected in their global subjective
evaluation, taking into consideration the various
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respective objectives. It is shown that the approach
proposed here can give a compromise solution that is
not only non-dominated but also optimal in the sense
that the decision-maker’s global subjective evaluation
value is maximized. It is also shown that the approach
proposed covers a wide spectrum of methods with
Bit’s approach”’ essentially equivalent to one of its
special cases under certain conditions.

1 Multi-objective Solid Transportation Pro-
blem

The well-known traditional TP is concerned with
the distribution of goods (products) from several
sources (supply points) to several desti-nations
(demand points) at minimal total transportation cost.
The multi-objective linear transportation problem
(MOLTP), on the other hand, deals with the
distribution of goods with the consideration of several
objectives, such as transportation cost, delivery time
and quantity of goods delivered, simultaneously.
MOSTP is a generalization of the MOLTP in which
three item properties (source, destination and mode of)
are taken into account in the constraint set instead of
two (source and destination).

Consider m sources O, (i =1, -+, m) and n
destinations D,(j =1, ---, n). At each source O, let
a, be the amount of a homogeneous product which we
want to transport to n destinations D; to satisfy the
demand for b, units of the product there.Let e, (k =1,
-+, K) be the units of this product which can be
carried by K different modes of transportation, such as
trucks, air freight, freight trains, ship, etc. A penalty ¢j,
is associated with transportation of a unit of the
product from source i to destination j by means of the
k-th conveyance for the p-th criterion. The penalty can
represent transportation cost, delivery time, quantity of
goods delivered, etc. A variable x; represents the
unknown quantity to be transported from source O, to
destination D; by means of the k-th conveyance.In the
real world, however, solid transportation problems are
not all single objective type. There may be more than
one objective in a solid transportation problem.

A multi-objective solid transportation problem
can be formulated as a standard linear programming
problem in the following way

m
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i=1 k=1

j=1
Notice that the balanced condition is treated as a
necessary and sufficient condition for the existence of
a feasible solution to (1)-(2). We denote by X the set
of all feasible solutions of the MOSTP, which is
formulated via Eq.(2).

2 Fuzzy Compromise Programming

Consider the multi-objective  programming
problem
min Z(x) ={Z,(x), Z,(x), =, Z,(x)}" ()

subject to x e X
where X is the set of feasible solutions (feasible
solution space).

Notice that the multi-objective programming
problem (3) often consists of a set of conflicting goals
that cannot be achieved simultaneously. Instead of
trying to find such an optimal solution that every
objective is optimal (usually this is impossible), we try
to find an optimal compromise solution at which the
global evaluation of the synthetic membership degree
of optimum for all objectives is maximized. The global
evaluation employed here reflects the decision maker’s
consideration of all criteria contained in the multi-
objective functions.

In this section, we present an approach to obtain
the marginal evaluation for each objective and to
aggregate these marginal evaluations into the global
evaluation of the synthetic membership degree of
optimum for all objectives. Based on the global
evaluation obtained, we can formulate a fuzzy
compromise programming approach to multi-objective
solid programming problems.

2.1 Marginal evaluation for a single objective

To define the membership function of MOSTP
problem, let L, and U, be the lower and upper bounds
of the objective function. These values are determined
as follows: calculate the individual minimum of each
objective function as a single objective transportation
problem subject to the given set of constraints. Let x, ,
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x,, ***, xp be the respective optimal solutions for the
P different transportation problems and evaluate each
objective function at all these P optimal solutions. It is
assumed here that at least two of these solutions are
different for which the p-th objective function has
different bounded values. For each objective function,
find the lower bound (minimum value) L, and the
upper bound (maximum value) U, .

Once the highest acceptable level U, and the
aspired level L, have been specified, the following
formula can be employed to define the marginal
evaluation mapping ¢, € [0, 1] for the objective Z,
(p=1,2, -, P)

1 Z,<L,

z U, -2,
d)P( P) - Up _Lp
0 z,=U,

In most practical applications, U, and L, can be

L,<Z <U, @)

determined from the ideal solution'®’ of problem (3) in
the following way.

Let (x'*, x**, ---, ") be the ideal solution of
problem (3), i.e. " is the optimal solution of the
single objective programming problem:

glei?Z,,(x) p=1,2,-- P
Then the values of all the P objective functions can be
calculated at all these P optimal solution »”" (p =1,

2, -+, P) to form a payoff matrix

Z1<xl*) Z1<x2*) Z1<xp*>
Zz(ic ) Zz(of ) Z3(9:5 ) )
Zp(x'")  Zp(x®) Zp(2"")

From the payoff matrix (5), U, and L, can be
determined for each objective Z,(p =1, 2, ---, P) by
the following

U,=max {Z, (") ]
22 ) } ©)
L =Z,(s")

where p=1, 2, -+, P.
2.2 Global evaluation for multiple objectives

Having all the marginal evaluations ¢, (x), ¢,
(x), =+, ¢p(x) for a given decision x € X, the
problem is then to determine a global evaluation of x
with respect to all the objectives. Usually the global
evaluation method to all the objectives is to adopt an
aggregation operator that can combine these
objectives into a single one that can represent the
decision maker’s preferences. An aggregation operator
has the following form

n(x) =@(¢(x), dy(x), =+, dp(x)) )

There have been many aggregation operators up till
now. Generally, an aggregation operator is a form of
union or intersection operator. Fuzzy set theory
provides an attractive aggregation connective for
integrating membership values representing uncertain
information. Here we will adopt the weighted root-
power mean operator to aggregate these objectives.

A weighted root-power mean operator M, has the

following form
P L

M (a,,a,,,a,) = ( Zwi“?)a

i=1

0 <l al < w

@)
where a; is the objective to be aggregated, and w, is
the weight of objective i, which represents the relative
importance of objective i to the decision maker. The
bigger the weight is, the more important it is to the
decision maker, generally the weights are normalized
to satisfy the following form

P
W= {w,, w,, -, wpi w, =0, zwp:]‘
p=1

P
©)
Weighted root-power mean operator covers a
wide spectrum of aggregation operators which are
often used in the areas of multi-criteria decision
making and multiple objective programming problems.
From a practical standpoint, the most important
parameters « is 1,2 and — oo.
1) The weighted arithmetic mean (o =1):

P
Mllo(al’ Ay, =, ap) = Zwiai (10)
=1
2) The weighted quadratic mean (o« =2):
P L
Mf(a],az, '”,aP) = (ZWLaLz)Z (11)
i=1

3) The conjunctive mean (oe—> — % ):

Mz;w(aly Ayy ap) zll’zll_iilpai
1 (12)
W, =W, =" =Wp :F

We note that M, produces the weighted additive
model used in goal programming problems, whereas
M~ is the most frequently used aggregation operator

w
decision-making  and
7-10]

in fuzzy multi-criteria
Zimmermann’s fuzzy programming problems[

Having chosen a suitable aggregating operator
@,, we can convert problem (3) into the following

fuzzy compromise programming problem:
max u(x) =@, (p,(x), ¢,(x), -+, pp(x))
(13)
subject to x € X
The fuzzy compromise programming problem
(13) is a single objective programming problem. We
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can employ the ordinary optimization technique to
solve it.

3 Fuzzy Compromise Programming for
MOSTP
The MOSTP consisting of Egs.(1) and (2) is a

multi-objective  linear ~ programming  problem.
Therefore, it can be solved with the fuzzy compromise
programming approach mentioned above. The details
of the foregoing steps may be presented as follows:
Step 1 Pick the first objective function and
solve it as a single objective transportation problem

subject to the constraints (2).

m

min Z,(fx]) = 3, Z ZCL,A (14)
i = =

Continue this process P times for P different objective
functions. Let x'* = {x, |, &*" = {a, |, -+, &' =

ijk ijk
%xfjk} be the optimal solutions for P different solid
transportation problems. If all the solutions (i.e. x'* =

xZ*:...:xP* :%xljk}; i:1,2,

,myj=1,2,
-+, n) are the same, then one of them is the optimal
compromise solution and go to step 6. Otherwise, go
to step 2.

Step 2 Evaluate the p-th objective function at
the P optimal solutions (p =1, 2, , P). For each
objective function, determine its lower and upper
bounds (L, and U,) according to the set of optimal
solutions.

U, _max{Z (" )}}

Isj<sP
Lp _Zp<xp* )
where p=1, 2, -+, P.
Step 3  Determine the membership function as
mentioned in Eq.(4), that is

(15)

1 Z,({x, 1) <L,
U,-Z,({xy!)
&, (xy) = W L,<Z,({x,})<U,
0 Z,J(%xijk})BUp
(16)
Step 4 Determine the weight W= {w,, w,, -,

w,! and choose a suitable weighted root-power mean

M, to formulate a fuzzy compromise programming
problem as follows:

max p( {x,1) =

o M;(d)l(%xijk}>7¢2(%xzﬂr%)a
gl e
Ll l) a7
Step 5 Solve the fuzzy compromise program-
ming problem (17) using the ordinary optimization
technique to obtain the optimal compromise solution
of the MOSTP.

Step 6  Stop.

The parameter « in (17) can take 1,2 and - oo,
respectively, and the fuzzy programming approach to
MOSTP developed by Bit, et al. is a special case of the
fuzzy compromise programming approach proposed in
this paper for a = — .

4 Numerical Example

To illustrate the fuzzy programming approach
discussed above, we consider the following two-
objective standard solid transportation problem:m

Supplies: @, =24, a, =8, a, =18, a, =10

Demands: b, =11, b, =19, b, =21, b, =9
e, =31, e; =12
Destinations: D, D, D, D,

Conveyances: 123123123123

Conveyance capacities: e, =17,

Penalties:
D, D, D, D,
1 23 12 312312 3

01 17 20 19 21 21 22 21 19 18 30 10 23
14 11 12 25 34 33 20 16 15 21 23 22
4-22 18 13 24 35 32 18 21 14 13 23 20

]=
03

01{:15 18 17 12 22 13 10 4 12 8 11 13]

C2_02 138 11 12 2 9 20 15 13 17 15 13
ol 5 6 7 11 9 7 10 5 2 15 14 18

01678]0651137]096]
,-13 6 6 17 11 18 12 16 12 18

14 7

These penalties can be expressed in a three
dimensional table. This problem can be modeled as
follows:

4 4 3
minZ, = IZ;C‘Z,(%,T p=1,2
i=1 j= =

sub]ect to
2 wa =24, z szjk =8,
j=1 = 17 =
4
; ,;xm, =18, 2 2x4jk =10,
4 3 3
2 X, = 11, szﬂk:lg’
E= RN
4 3 4
4 zxﬁ}k :215 z _9’
i=1 k=1 4: 4:

Xy = 17, X = 31,

i=1 j

1 i=1 j=1

~

4 4
s s
N Y w, =12

i=1 j=1
wherex, =0;i=1,2,3,4;;=1,2,3,4;k =
1,2,3;C' = [c ,.jk], C = [cij,f].

Applying the fuzzy programming method to the
problem of this example, we obtain

U =866, L =703, U, =537, L, =293

And by using the max-min operator of fuzzy
linear programming problem, Bit, et al. obtained the
optimal compromise value (749.285 3, 362.286 0).
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Applying the fuzzy compromise programming
with weighted root-power mean M as an aggregation
operator and taking L, and U, for each objective Z, as
its ideal value and anti-ideal value, respectively, we
obtain the results of this example with a calculation
program based on MATLAB 6.0 platform. Various
weights assigned and the corresponding optimal
compromise objective values for ¢ =1,2 and — o are
shown in Tab.1. The corresponding fuzzy compromise
solutions {x; | are omitted for reasons of space
limitations.

Tab.1 The optimal compromise objective values
of the example

Weights ~ Optimal fuzzy compromise objective values (Z,, Z,)
(wy , wy) a=1 a=2 a= -
0.0, 1.0) (887,293) (887,293)

0.1,0.9) (852, 295) (866, 293)

0.2,0.8) (826, 302) (866, 293)

0.3,0.7) (826,302) (846, 296)

0.4,0.6) (733, 376) (826, 302) (749.285 3
0.5,0.5) (715,394) (826, 302) 362.286 0)’
0.6,0.4) (715, 394) (715, 394)

0.7,0.3) (715,394) (715, 394)

0.8,0.2) (710, 418) (715, 394)

0.9,0.1) (710, 418) (710, 418)

(1.0,0.0) (703, 537) (703, 537)

5 Conclusions

In the present work, a fuzzy programming
approach is used to find an optimal compromise
solution for a multi-objective solid transportation
problem. The membership function is defined and a
linear compromise optimization model is developed
using the fuzzy compromise programming approach
proposed in this paper. The approach has the
following features:

1) It provides the analyst with a simple and easy
mathematical programming problem.

2) It can be easily implemented to solve all types
of multi-objective solid transportation problems, multi-
objective transportation problems, multi-objective
multi-index transportation problems, linear or non-
linear vector minimum problems and vector maximum
problems.

3) It gives a preferred compromise solution
which is not only non-dominated but also optimal in
the sense that the decision-maker’s global subjective
evaluation value, taking into consideration the various
respective objectives, is maximized.

4) It synthetically considers the property of

multi-objective  decision making by marginally
evaluating the individual objectives and globally
evaluating all the objectives, and can always get the
compromise solution by the weights that reflect the
decision maker’s preference attention with the fuzzy
compromise programming approach.

On the whole, the fuzzy compromise program-
ming approach proposed here is a suitable method for
the multi-objective solid transportation problem.
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