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Abstract: A new kind of combining forecasting model based on the generalized weighted functional mean is
proposed. Two kinds of parameter estimation methods with its weighting coefficients using the algorithm of
quadratic programming are given. The efficiencies of this combining forecasting model and the comparison of
the two kinds of parameter estimation methods are demonstrated with an example. A conclusion is obtained,
which is useful for the correct application of the above methods.
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The method of combining forecasting is an important method in forecasting. It has been paid more attention
since Bates and Grangerm originally proposed its theory and method in 1969. In solving the various actual
forecasting problems, combining forecasting models may have different forms. But forecasting efficiencies may be
different for different models. In order to get the best efficiencies of combining forecasting models, Wang and
Fu'?'presented four kinds of aggregative methods of group forecasting. In this paper, we present a new kind of
combining forecasting model based on the generalized weighted functional mean. This model is a new kind of
aggregative method of group forecasting which has extensive representation. By seeking the appropriate
parameters and determining the optimal combining form, we can effectively improve the forecasting precision.
But, if an incorrect parameter estimation method is adopted, the effect will be weak. In order to make scientific
forecasting, we present two kinds of parameter estimation methods with the weighting coefficients of the above
model. Finally, this model is used to forecast air material consumption. Its efficiency is demonstrated with an
example. Some useful conclusions are drawn, which can lay solid foundations for the correct application of the
above methods.

1 Generalized Weighted Functional Mean Combining Forecasting Model

Suppose the real values of some forecasting problem in a period are Y(t) (t=1, 2, -+, n). There are m
kinds of feasible individual forecasting models to forecast it, the forecasting values of which are Yj( t) (t=1,2,
-, n;j=1,2, -+, m).Furthermore, we assume that the weighting vector among the m kinds of models is W =
{w,, w,, -+, w, | ", which satisfies the normalized constraint condition E"W =1 and the nonnegativity constraint
condition W=0, where E = {1, 1, ---, 1}". We denote the values of the combining forecasting model by Y( t).
Obviously, the less the approximation extents between f/( t) and Yj(t), the better they are. Thus we choose the
performance index as

min J(1) = iw,[(f(m)))f’ ~(g(Y())']> 1=1,2,,n;p#0 1)

where f and g are both continuously differentiable functions, they should take the same functional forms
customarily; and p is a nonzero variable parameter, which can take different values according to the different
forecasting problems.

Suppose (f(¥(1))"™' 0 and M#O. Let a{ﬂzO, we get
aY(1) aY(1)
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Formula (2) is the generalized weighted functional mean combining forecasting model to be given in this paper. It
includes the following combining forecasting models.

1.1 Generalized weighted arithmetic mean combining forecasting model'*’

In formula (2), let £( f/(t)) = f/(t) and g( f/j(t)) = f/j(t) , we have

V() = [ S (h0) L 21,2, e i p #0 3)

This is generalized weighted arithmetic mean combining forecasting model. And, when p =1, it is a simple
weighted arithmetic mean combining forecasting model. When p = — 1, it is a simple weighted harmonic mean
combining forecasting model. When p =2, it is a simple weighted square sum mean combining forecasting model.
When p =1/2, it is a simple weighted square root sum mean combining forecasting model, etc.

1.2 Generalized weighted logarithmic mean combining forecasting model '

In formula (2), let f( Y(t)) =lnf’(t) and g(Y/(t)) =1nf/j(t) , we have

Y(1) = exp| ( iwj(lnﬁ,(,;)y)"] b =1,2, , n;p#£0 )

This is a generalized weighted logarithmic mean combining forecasting model. When p =1, it is a simple
weighted geometric mean combining forecasting model.

1.3 Generalized weighted exponential mean combining forecasting model
In formula (2), let f(Y(t)) =expY(t) and g( Yj(z)) = expl?j(t), we have

Y(t) Zm[(iwj(expi/j(t))p);’] t=1,2,,n;p#0 )

This is a generalized weighted exponential mean combining forecasting model.
Furthermore, if f and g are taken in any other forms of functions, we can get some additional new combining
forecasting models.

2 Methods of Parameter Estimation in Generalized Weighted Functional Mean Combining
Forecasting Model

In order to estimate the weighting coefficients of formula (2), we transfer formula (2) into:

m

V(D))" = Fuwg(Y, ()" 1=1,2,,n ©)
j=1
If no errors are considered, there should ideally exist the following formula:
Y1) = Fw(e(Y,(1)))"  t=1,2,,n )
Jj=1

In fact, forecasting errors always exist objectively and inevitably. So, Eq.(7) doesn’t hold in general cases.
Now, we can introduce the following error item:

£,(1) = (f(Y(1)))" = (A(Y(1)))" = iwj[(g(f/,-(t)))” - (f(Y(£)))"] ®)

Denote E, = {&,(1), £,(2), -, &,(n) | Tand ¥, = ((g(¥,(£)))" = (f(Y(2)))"),,, then, Eq.(8) can
be written as E, = ¥,W. In order to make the combining forecasting model optimal, we should choose the

appropriate weighting coefficients to make min J, = z gi (1) =E E, = W' ( Y)Y, ) W. Then, to solve the
t=1
weighting vector is to solve the following optimization problem:
Model 1 min J, =W'(Y,Y,)W
5. t. {ETW =1
wW=0
But on the other hand, we can transfer formula (2) into:
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o g(Y(0))
w, | —1—+ = = 2, . n 9
2 ,(f(m))) 1 oe=1,2, -, ©)

In the same way, if no errors are considered, there should ideally exist the following formula:

o gV ()
N =1 t=1,2, - 10
Yo (v ) L2, n (10)
But Eq.(10) still doesn’t hold in general cases. We can introduce the following error item:
& () .
Tlp<t) _;wj(f(y(l>) ) 1 t_lsz’ , U (11)
_ T _ g(Y;’(t)) p .
Denoter—%np(l),np(Z), -, m,(n)} "and G, = (W) -1 , then, Eq.(11) can be written

as H, = G,W. In order to make the combining forecasting model optimal, we must choose the appropriate
weighting coefficients to make min K, = Z 7712;( t) =Hy H, = w'( G; G,) W. Then, to solve the weighting vector
t=1

is to solve the following optimization problem:
Model 2 min K, =W'(G, G,)W
s.t. {E Wl
W=0

Model 1 and model 2 are completely the same in solution means. So, we take model 2 as an example to study
their solving procedures.

For model 2, it is clear that it is a quadratic programming problem. According to the theory of quadratic
programming, when G, G, is a positive semidefinite matrix, there must exist an optimal solution. But it doesn’t
have a universal solution. For the above problem, if we don’t consider the nonnegativity constraint condition, we
can use the Lagrangian multiplier method to solve it as follows.

Denote L =W'(G,G,) W+ A(E'W 1), where ) is a Lagrangian multiplier corresponding to the constraint

condition E'W =1. Suppose G, G, is a positive definite matrix and let ;TLV =0, we have 2G,G,W + AE =0. And
with ETW =1, we have
(G'G)'E
W= e S 12
E'(GG,)'E (2

But this solution can yield the negativity weighting coefficients, which have no practical meanings. So, the
nonnegativity constraint condition should be considered. The known solution methods of model 2 are the linear
programming method "', nonlinear programming method ', dynamic programming method"®’ and neural network
method ™', etc. But they are all very complicated. In this paper, we use the algorithm of quadratic programming to
solve it. Its Kuhn-Tucker conditions can be expressed as

(G, G, )W-AE -U =0
E'W=1

ww, =0 i=1,2, -, m (13)
W, U=0
where A is a Lagrangian multiplier corresponding to the constraint condition E'W =1, U = {u,, u,, **-, u, | ' is
the Kuhn-Tucker multiplier corresponding to the weighting vector W= {w, , w,, -+, w, | ",and E= {1, 1, -+,

11", In order to solve (13), we construct the aid linear programming. And since A without the nonnegativity
restriction, let A =X’ — A” which satisfies A’, A”=0 and \'\" =0. Now we can construct the following aid linear
programming model:
min J =v
(G, G, )W-ANE+)\'E-U=0
StIE'W+v=1
W, U=0; A", A", v=0
It must be noticed that A" and A" as well as u; and w, can’t be basic variables simultaneously. By solving
model (14), we can obtain the optimal combining weighting vector W* easily. Generally speaking, the optimal

(14)
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combining weighting vector W* can’t be identical for different parameters p. But there must exist a group of
weighting vectors which can produce the best combining forecasting effects.

3 Evaluation of Forecasting Effects

According to the evaluation conventions of forecasting effects, we choose the following indices as our
evaluation criteria to evaluate and compare the two kinds of parameter estimation methods in the generalized
weighted functional mean combining forecasting model:

@ Sum of squares error SSE = Y (¥(1) - Y(¢))?, where Y(¢) and Y(¢) represent the real values and the
t=1

forecasting values, respectively; (2 Mean absolute error MAE = Lz |Y(t) - f/(t) B (3 Mean square error
n =

n

MSE = LJE (Y(t) - Y(t))*; @ Mean absolute percent error MAPE = Lz
n t=1

n t=1

Y(1) - Y(1)

70 ; (3 Mean

1 [ (Y1) - Y(1))?
t MSPE = — —_ /),
square percent error - \/ ; ( 0 )

4 Example Analysis

We take the example of air material consumptionm. The consumption of the air material from 1992 to 1997

[7]

is listed in Tab.l in detail. Its dominating forecasting models are " as follows.

Causality forecasting model: Yl (1) =17. 734 62 +4. 457 063 x 10 *«x;, where «x, is times of flight landing

which is one of the flight parametersm.

Time series forecasting model: Y, (¢) =156. 3 =0. 247Y(¢—1).

Tab.l The actual consumption and the forecasting values of each model

Year Y(1) Y, (1) Y, (1) Yy (1) Ya (1) Yo (1) Yar (1) Ys (1) Ys (1)

1992 119 118

1993 131 123 127 125.34 124.67 125.33 124.68 125.33 124.61
1994 150 125 124 124.40 124.57 124.41 124.57 124.40 124.59
1995 101 124 120 121.58 122.26 121.59 122.24 121.58 122.35
1996 117 119 132 126.32 124.16 126.29 124.16 126.29 124.11
1997 130 137 128 131.46 133.00 131.50 132.95 131.45 133.23

In order to improve the forecasting precision, the effective consumption forecasting model should be the
combination of these two kinds of forecasting models. By using the method of model 2 in this paper we can get
the following optimal combining forecasting models.

Optimal generalized weighted arithmetic mean combining forecasting model (p* = —1.3):
Yo, (1) =[0. 574473 (1) +0. 4256 (1) ] 75
Optimal generalized weighted logarithmic mean combining forecasting model (p* = —6.4):
Y, (1) =exp[0. 5709(InY, (1)) ~** +0. 429 1 (In¥, (1)) **] &7
Optimal generalized weighted exponential mean combining forecasting model (p * = —0.009 52):

Yo, (1) =In[0. 591 9(e) ~ %% 10, 408 1 (") ~" 5] -Tows
And, by using model 1, we can obtain the other optimal combining forecasting models as follows.

Optimal generalized weighted arithmetic mean combining forecasting model (p* = —1.5):
Y, (1) =[0. 40507, "5(1) +0. 59505 (¢)] 75

Optimal generalized weighted logarithmic mean combining forecasting model (p* = =5.9):
Y, (1) =exp[0. 408 1(InY, (1)) "> +0. 591 9(In¥, (1)) 5] 55

Optimal generalized weighted exponential mean combining forecasting model (p* = —0.021):

Y, (1) =In[0. 4062 (&) ™' 40. 593 (") 1] -wox
We make a comparison among the above models. According to the formulae of these models, we get the
forecasting values of these models listed in Tab.1 in detail. And the evaluations of the forecasting effects are
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described in Tab.2 in detail.
Tab.2 Evaluation results of forecasting effects

Indices of forecasting effects f/l (t) f/z (t) Y;l (t) 5’32 (t) YM (t) 5’42 (t) f/5] (1) f/52 (1)
SSE 1271 1282 1199.8952 1198.9192 1199.9634 1198.0319 1199.3210 1203.2399
MAE 13.0 13.2 12.524 7 12.6353 12.5300 12.622 2 12.5170 12.698 1
MSE 7.1302 7.1610 6.9279 6.925 1 6.928 1 6.9225 6.926 2 6.9375
MAPE 0.1053 0.107 1 0.101 7 0.102 5 0.101 8 0.102 4 0.101 6 0.1030
MSPE 0.058 84 0.057 63 0.056 21 0.056 45 0.056 22 0.056 42 0.056 20 0.056 59

It can be seen that the best effects of the generalized weighted arithmetic mean combining forecasting model
and the generalized weighted logarithmic mean combining forecasting model can be obtained if and only if the
parameter estimation model 2 is adopted. But for the generalized weighted exponential mean combining
forecasting model, its best effect can be obtained if and only if the parameter estimation model 1 is adopted. Many
other examples also support the above conclusion.

5 Conclusion

This paper presents a new kind of combining forecasting model and its parameter estimation methods of
weighting coefficients. From the example of air material consumption forecasting, we can see that the generalized
weighted functional mean combining forecasting model has extensive representation. It is a new kind of
aggregative method of group forecasting. By taking the suitable combining form of the forecasting models and
adopting a correct parameter estimation method, we can get the optimal combining form. Thereby, we can improve
the forecasting precision and gain preferable forecasting results.
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