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x=0, m=1 on the base of the asymptotic upper bounds for r(C,, K,) which were
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Let H be a graph without isolates. The Ramsey
number r( H, K, ) is the smallest integer N such that
each graph on N vertices that fails to contain H as a
subgraph has an independence number of at least n.
Denote by C,, the cycle of length m and by W, the
wheel of order m + 1, where W, = K, + C,. The
“join” of graghs K and H, denoted by K + H, is the
graph obtained by starting with vertex disjoint copies
of K and H and adding uv to the edge set for every u
eV(K) andveV(H). Chvital'"’ proved r(T,, K,)

=l+(m-1)(n-1), where T, is any tree of the
order m. A generalizationm of a result of SpencerB:
shows that for the connected graph G, r( G, K,) is
linearly bounded if and only if G is a tree, and the
cases where G contains a cycle are complicated (see
lemma 2 in this paper). In this paper, we give
asymptotic bounds for r( W, , K,) and some related

Ramsey numbers.
Caro, et al'* have proved that when m is even
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and for m=4, as n—®
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where C, (m) and henceforth C, (m) are positive

constants. For m = 3, the order of magnitude of
2
r(Cy, K,), viz. “—, but the different values in
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different places, was determined by Ajtai, et al.”’ and
Kim'*'. For odd m=3, Li and Zangm proved that as
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in particular, C,(m) =6 if m =5.

1 Upper Bounds for r( W,

m

K.)

We will use the function £, (x)"*°' as

fulo) = [ oo

x=0,m=1
om + (x —m)t
which plays a central role. Li and Rousseau'*’
originally got its property by a complex method. Later
Li, et al. got it by an improved method in Ref.[9].

Clearly f, (x) is a decreasing function. Since (1 -

1
t)"=(1-1t) for 0<t<1 and m =1, a simple

calculation gives
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With =1 + u, the last inequality is equivalent to (1
m
+2u)log(1 +u) >u, which holds for all u >0 since
log(1 +u) >—"— (see Ref.[4]).
1+u
Also, see Ref.[9],
1
>7
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Throughout the remainder of this paper, we shall

x=m )

let G, stand for the subgraph of a graph G induced by
the neighborhood of v.

Lemma 1 Let G be a graph with N vertices and
average degree d. If for any vertex v of G, the average
degree of G, is at most a, then a(G) =Nf,,,(d).

The proof of lemma 1, see Ref.[9].

By combining the upper bounds of r(C,, K,)
and lemma 1, we shall manage to get the following
upper bound for r(W,, K,).

@D Let m=4 be any fixed even
integer. Then for sufficiently large n, we have

2m -2
m=2

Theorem 1
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@ Let m=3 be any fixed odd integer. Then for
sufficiently large n, we have

where C,(m) =
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where C, (m) = % In particular,

C,(m) =12 if m =5.

Proof Let G be a graph of order N =r(W,_,
K,) —1 such that G contains no W, and o(G) <n -
1. Then for each vertex v of G, we have @D the degree
of v is at most r(C,,, K,) -1, and @ the maximum
degree and therefore the average degree of G, is at

most r ( P K,) -1, where P, _, is the path of

m-19
length m - 1.
Thus, it follows from lemma 1 that
n>a(G)=Nf,(r(C,, K)-1)=Nf,(r(C,, K,))
©)
where a = r (P K)=(m-2)(n-1) +1<
r(C,, K,).
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where C, =C,(m) in (1). Hence, as n—o

log
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So, as n—

r(W,, K,)=N+1<(1 +o(1))(j3(m>(@)
where C,(m) =W.

(2 The case where m is odd and m =3 can be
proved on the base of (2), by the same analytic
calculation in (D; here we omit it, completing the
proof.

2 Asymptotic Bounds for r(K,, K,)

Lemma 2" For any fixed integer m = 3,
constants § >0 and o =0, if F is a graph on m vertices
and G is a graph on n vertices with e (G) =
(6§-0(1))n’
(logn)*®
=c(m, &) >0 such that

as n—oo , then there exists a constant ¢

r(F, c)><c-o(1>)(

Lemma 2 is
following result.
Lemma 3"

n m-2
(logn>“”)
a generalization of Spencer’s

For any fixed integer m =3, there
is a constant ¢ >0 such that

m=1

n m-=2
10gn)
Lemma 4 Let m=3 be a fixed integer. Then, as

r(C,, K,) ac(

n—w ,
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r(Wm,K,,)$(1+0(1))(m_2)r(cm’Kﬂ)@ ©)

Proof By (3) and lemma 3, we can obtain
lemma 4; here we omit it.
Li, et al'”’ proved that as n— | r(K,, K,) <

k-1
M‘ Note that K, = K, + C;. By lemma 2

(10gn> k-2
and lemma 4, we can get the following corollary.
Corollary As n—oo , there exists a constant ¢ >
0 such that
n < n’
c( )2<r(K,, K,))<(l+o0(1)) >
logn (logn)

3 Upper Bounds for r(K, +C, , K,)

For m=3,as n—w , r(K, +C;, K,) =r(K,,;,
(1 +0(1))n"*?
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where C; (m) = (m -2)C, (m), C, (m)
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Proof of )  When m is even, it is proved by
induction on k.
For £ =0, by (1),
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For k=1, by (6),
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Our statement follows.

Suppose that the statement holds for 0,1,2, -,
k. We proceed to the induction step. Let r(k, m; n)
denote r(K, +C,, K,) and let G be a graph of order
N=r(k+1, m; n) —1 such that G contains no K, ,
+ C, and that ( G) <n - 1. Then for each vertex v of
G, we have (D the degree of v is at most r(k, m; n)
-1, and @ the maximum degree and therefore the
average degree of G, is at most r(k -1, m; n) - 1.
Thus, by lemma 1,

n>a(G)=Nf,(r(k, m;yn) -1)=

N, (r(k, m; n)) )
where a =r(k -1, m; n). Now let £ be an arbitrary
number with 0 < ¢ < 1. Then, by (3) we know that
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whenever - > M. We decompose the set of large
a

natural numbers into n’ and n” such that
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loss of generality, we may suppose that for all n’,
(n')""® >M. So by (7), we have

n' >Nf,(r(k, m;n'))=
r(k, m;n')

a >(1 — &) Nlogn'
r(k,myn') = r(k,m;n)

n/

(1-8)"
, and the desired inequality for r(k +1,

log

(1-g)N

where a =r(k -1, m; n'). Hence N <
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m; n') follows from the induction hypothesis on

r(k, m; n'). By @), f,(x) ;11?, if x=a, we get

N
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where a =r(k -1, m; n”) <r(k, m; n"). Hence,
N<n"(1 +r(k, m;n")) <
n"(1+(n")' *r(k=1, m; n"))
The desired inequality for r(k + 1, m; n") follows

from the induction hypothesis on r(k -1, m; n”
” 2

,) for sufficiently large n”.

n">Nf,(r(k, m; n")) =

since (n")*"% < (logn'

Thus we complete the proof of the case where m is
even.

The case where m is odd can be proved by a
similar method; here we omit it.
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